
Proposal for Modernization of KDE Infrastructure

Jan Kundrát

January 27, 2015

Executive Summary
This paper proposes a few ideas for modernizing the infrastructure that is provided to KDE
developers. At the core is an idea for adopting Gerrit, an advanced code-review and Git hosting
platform. Gerrit has been under evaluation by a couple of KDE projects since September 2014.
We have received very positive feedback from people who participate in Gerrit evaluation, and
now we have a stable, production setup connected to our Continuous Integration. This means that
developers know whether a patch which they are reviewing introduces regressions, and whether
their project will still build on an ancient machine with Qt 4.6 and GCC 4.4.

This proposal goes far beyond just saying “use Gerrit”. We outline how to integrate it with
other tools, and how to make sure that the end result is a featureful infrastructure which is easy
to maintain for years to come.

Another part of this proposal is opening up of the process of infrastructure maintenance. By
treating service configuration as code, we are able to free up sysadmin resources and leverage help
from community. Because we are embracing code review and automated Continuous Integration
for sysadmin tasks as well, the help from community can be accepted without excessive risks.

The paper discusses high-level motivation, provides an overview of the proposed features, and
wraps up with a detailed discussion explaining how to implement our suggestions.

1 Pain Points of the Current Setup
We are living in a world where GitHub has influenced fellow developers’ expectations. People are
used to sending pull requests around. Day-to-day changes are implemented through self-service
portals, with no human intervention. If a task can be automated, it better be automated well.
There is little point in wasting valuable human on tasks which can be handled by machines.

The current set of tools which KDE offers is a bit antiquated. Reviewboard is not integrated
with the Continuous Integration (CI) infrastructure or bug tracking. Uploading patches and testing
changes from Reviewboard requires developers to take many manual steps. These are prone to
errors and constitute extra work for everybody. Users have no idea that a patch exists unless they
actively follow multiple systems.

Current project hosting is based on Redmine/ChilliProject which has reached its breaking
point as well. The anongit setup is held together by duct tape and sysadmins’ much appreciated
work. Events which propagate instantly on competing, proprietary code hosting platform might
take an hour on our infrastructure. Some of the software which we use is no longer maintained.
This constitutes a problem for our developers. People expect an excellent service, but our current
tools cannot deliver that.

Readers are encouraged to read sysadmins’ excellent summary of these problems to gain further
insight into the list of current issues.

1

2 Why Gerrit?
The proposal centers around using Gerrit for primary Git repository hosting and code review.
Gerrit is a mature, yet actively developed tool. Originating at Google, it has since been adopted
by a number of large open source projects, including the Qt Project, LibreOffice, Android, Eclipse,
OpenStack, WikiMedia, Tizen, CyanogenMod and many others. Gerrit is regularly spoken about
at conferences and developer meetups. It receives substantial commercial backing and is the code-
review platform of choice for corporations and small businesses alike, including Google, eBay, SAP,
Sony Ericsson, KitWare and others. It is also available as a hosted service from an independent
vendors on a commercial basis. It has a friendly upstream and a responsive community that
provides advice when needed. Patches are accepted with little bikeshedding.

Gerrit itself focuses on doing one thing, and doing it well. As such, it provides an integrated
platform for code review which is tied with a Git server. This puts Gerrit into a unique position
where pushing changes for a review is just a matter of git push, and checking what others have
created a matter of git pull. Integration with third party tools is implemented via a rich set of
stable APIs and via plugins.

The proposal is based on an existing infrastructure of the OpenStack project. With tens of
thousands of commits per month, hundreds of repositories and thousands of committers, a solution
which scales for OpenStack is guaranteed to handle KDE’s scale as well. We can also leverage the
work of others and to benefit from problems which other large-scale projects have solved already.

Gerrit is currently used for code review and CI at the Qt Project. Because many KDE de-
velopers are also Qt contributors, familiarity with Gerrit helps people move between these two
high-profile and related projects without much effort.

3 Technical Solution
The rest of the text deals with technical aspects of providing service for KDE developers. One
of the focus points is discussion on how to integrate various services together. In several cases,
there are multiple approaches which will all lead to a success. We have tried to provide a balanced
opinion on how to proceed based on the past experience, real-world feedback and field testing of
our Gerrit deployment, as well as on experience of other large-scale FLOSS projects. Nonetheless,
chances are that the proposed ideas are not the best option out there. In that case, we are looking
forward to hearing about what can be improved.

3.1 Identity Management
KDE already has an identity service based on LDAP. It manages a list of users along with their
roles within KDE. A custom web application used for self-service account management is deployed
on KDE infrastructure. These services will be preserved without modifications. Should a need to
change them arise in future, it will be easy to e.g. deploy another web frontend without affecting
the rest of our infrastructure.

The choice of LDAP is an excellent technical decision. LDAP is an industry-standard for
identity management, and it is rare to find a mature application which needs user accounts, yet
cannot integrate with LDAP these days.

In future, this setup might well be combined with a native Single-Sign-On (SSO) service. That
way, users not only have just a single password to use, but they also will not have to enter that
password to multiple services or web pages all over again.

3.2 Git Repository Hosting
Gerrit will act as a primary repository host. This will be completely transparent to the users.
Developers who do not want to change their workflow will witness no user-visible changes. All
existing clones will work, and developers will be able to direct push and bypass code review if they
so choose.

2

There will be no need for mandatory code review on a KDE-wide basis. Projects will be free
to opt-in for mandatory reviews and/or CI coverage with a potential for manual override. With
an exception of infrastructure projects which directly correspond to code running at our servers
or root access, all KDE developers will have the same level of access.

3.2.1 Code Review

One of Gerrit’s strongest points is its support for fine-grained code reviews. KDE developers
can approve changes, while general public is free to offer their comments. A difference between
a bystander’s review (“this looks good, but I don’t really know the details”) and a maintainer’s
review (“yes, this is it”) is clearly indicated.

The reviews can tackle each change on various levels; there is support for commenting on the
change as a whole, on particular lines or ranges of characters, and adding file-level comments as
well. Individual reviews can be replied to. An SSH command for conducting code reviews is
available as well.

Support for adding image attachments is available in upstream’s Git repository, and will be
deployed when we upgrade to the next release.

Maintainers can push changes into the Git repository straight from the code review UI. This
eliminates the current source of pain where a KDE developer gives his “Ship it!” on Reviewboard,
and then nothing happens because the patch author has moved on, or doesn’t have a Git account
at all.

There are two different web interfaces, and all functionality is made available via REST APIs.
A console, TUI application called Gertty1 written in Python is available which is equal, feature-
wise, with the web interface. Extending other applications, such as KDevelop or the Qt Creator,
is possible – a good opportunity for this will be the Google’s Summer of Code project. As a proof
of concept, Eclipse is an example of an IDE which already integrates with Gerrit and Bugzilla.2

Third-party tools integrate with the code review process either via SSH, or through the REST
APIs. The bundled web UIs are implemented as a client-side JavaScript application that talk to
Gerrit via the REST APIs. There is no artificial feature gap between what can be done with
official tools and what is available to other UIs. Alternative web UIs using various modern web
frameworks are under development.

The recommended way of pushing changes for review is via a magic Git branch, refs/for/master.
A development version of Gerrit contains features for interactively editing files and proposing
changes over the web interface.3 A complementary application for uploading patches via web is
also available.4

Each version of each proposed change is available for download as a Git ref, a unified diff, or a
Zip/TGZ/. . . archive. A regular Git clone does not download these changes by default. Full power

1Additional screenshots and more information are at http://princessleia.com/journal/?p=9785.
2An impressive tutorial showing how to work with Bugzilla, Gerrit and Jenkins from within an IDE is available

at http://www.eclipse.org/community/eclipse_newsletter/2013/september/article4.php.
3See https://gerrit-review.googlesource.com/Documentation/user-inline-edit.html for an overview and

screenshots.
4See WikiMedia’s https://tools.wmflabs.org/gerrit-patch-uploader/.

3

http://princessleia.com/journal/?p=9785
http://www.eclipse.org/community/eclipse_newsletter/2013/september/article4.php
https://gerrit-review.googlesource.com/Documentation/user-inline-edit.html
https://tools.wmflabs.org/gerrit-patch-uploader/

Reviewing a change with Gertty, a third-party TUI.
(The color scheme is configurable.)

4

of Git is available to assess differences between versions of each change. There is no need to learn
another VCS system, as all functionality is made available via pure Git.

Gerrit can be configured to automatically assign reviewers based on who has recently authored
lines which are touched by a patch. This settings is controlled on a per-project basis, and there is
an upper limit on how many people can be added that way to prevent excessive spam.

3.2.2 Conflicting Changes

When a project is big enough, sooner or later there will be patches laying around which are
mutually incompatible. By default, Gerrit uses merge algorithm that solves conflicts on a file
level. A list of changes which modify the same files is shown within the UI. Changes which cannot
be submitted due to a merge failure are clearly marked as needing a rebase in all UIs. That way,
a developer can make sure that a conflict is solved in a meaningful way and without introducing
bugs.

3.2.3 Scratch Repositories

The functionality of scratch repositories will be preserved. A trivial script available via SSH and/or
HTTPS will allow users to create and manage personal repositories under scratch/username/.
This is made possible due to Gerrit’s rich set of APIs:

1 if not check_ldap_group($user , "developers"):
2 die "you are not a KDE developer"
3 if not regexp_match($proj , ’[-a-zA-Z0 -9_]’):
4 die "invalid project name"
5 if operation == "delete":
6 return exec "ssh bot@gerrit delete --yes -really -delete --force scratch/$user/$

proj"
7 if operation != "create":
8 die "invalid operation"
9 return exec "ssh bot@gerrit create -project --owner $user --parent sysadmin/gerrit -

user -scratch -projects scratch/$user/$proj"

If a need arises, it is possible to offer this functionality via a plugin and to integrate it into
Gerrit’s web UIs and SSH and REST APIs as well.

3.2.4 Personal Clones

KDE developers who wish to share their work which is not quite ready for merging with the world
are encouraged to upload it to Gerrit as a change not for review. That way, there is no need to
create and clone another repository. All clones are equally visible on a single place. It is possible to
distinguish between changes intended for review, and these not-intended-for-submission changes.
Dashboards are provided for browsing changes in each category separately. Regular Git users will
not be cloning these personal-work branches.

Another, complementary solution for clones are per-user branches. These are perfectly sup-
ported in Gerrit, and can be moved away to a hidden namespace if it is not desired to “pollute”
everybody’s clone by these refs.

3.2.5 Repository Browsing

Gerrit links with an arbitrary WWW Git frontend. The proof-of-concept deployment which has
been running in KDE uses KDE’s QuickGit for repository and commit browsing. A native deploy-
ment will likely use a dedicated VM with cGit. An alternative is to reuse KDE’s existing GitPHP
frontend to minimize the amount of required changes.

Pushes will be replicated in real time via Gerrit’s native replication. There are no technical
limitations on force pushes, and no problems will arise if projects decide to allow them. Support
for mirroring to GitHub can be provided out-of-box if the community wishes so.5

5There are production-ready solutions for automatically managing GitHub repositories, including automated

5

3.2.6 Post-Commit Review

Finished changes can be commented on, and a prominent “Revert” button for proposing a revert
for code review is available. The comments are sent to the right people, and the author of the
troublesome patch is Cc-ed on the revert request.

A new feature of the (not yet released) Gerrit 2.11 is support for proposing changes right from
the web interface. We do not have experience with this functionality yet, but we fully expect that
it can be used as a basis for adding repository auditing later on.

3.2.7 Anongit – Replicating for Read-Only Git Mirroring

Gerrit has a built-in, native plugin for smart replication. The replication is congestion-aware, and
can create and/or delete remote repositories on each replica. People are using this over the globe,
with mirrors on different continents and over unreliable WAN links. The replication is push-based
with an event queue with each replica being synced as fast as it can. If a replica falls behind,
attempts are transparently retried and merges are combined together for efficiency.

3.2.8 User Management

Gerrit supports LDAP authentication, so it will simply talk to KDE’s existing LDAP. Information
about developer status is obtained from LDAP as well. If we were to introduce more fine-grained
access control to some repositories, LDAP groups would be used.

SSH keys cannot be looked up from LDAP at this time. This is a similar situation to the current
setup which requires a script to synchronize keys due to OpenSSH and Gitolite limitations.

One option is to let users manage their SSH keys right within Gerrit. This is possible because
except for translators, no other uses of SSH keys are needed when SVN is deprecated. A better
option is keeping the SSH keys in LDAP and introducing a simple script which deletes keys that are
no longer desired and adds new ones into Gerrit. Because Gerrit has an API for managing user’s
SSH keys via a service account, the script is going to be reasonably simple and straightforward.
The script can be triggered in response to LDAP’s syncrepl events.

A truly hackish approach which would nonetheless get the job done is:
1 exec "ssh bot@gerrit set -account $user --remove -ssh -keys ALL"
2 exec "ssh bot@gerrit set -account $user --add -ssh -key - < authorized_keys"

A more elegant tool should inspect the list of SSH keys and only make changes which are
actually necessary. This will be written by jkt.

3.2.9 E-mail Notifications

Gerrit can send e-mails about various aspects of changes, including events about new changes,
added comments, reviews, and changes hitting the Git tree. Users can pick what projects are
watched, and can set up fine-grained filters, including conditions for branches, file paths and
authors.6 This way, users can opt-in to receive notifications about projects, branches or files they
care about. There is no support for e-mailing info about direct pushes at this time. This will be
developed by jkt and proposed for upstream integration.

A backup alternative is reusing KDE’s existing hooks and the commitfilter. However, moving
all settings into a single place is of course a better solution.

3.2.10 IRC Notifications

In the current setup, this feature is implemented by sending e-mails from a post-commit hook to
a machine mailbox. A bot is watching the recipient address, and acts on the incoming e-mails by
forwarding them to an IRC bot, which in turn sends them to appropriate channels.

closing of pull requests with a friendly note asking users to contribute via project’s official channel.
6Check https://gerrit.vesnicky.cesnet.cz/r/Documentation/user-search.html for a list of supported

search terms and expressions.

6

https://gerrit.vesnicky.cesnet.cz/r/Documentation/user-search.html

We propose to use Gerrit’s events and an existing GerritBot project. It is already providing
notifications about Gerrit changes at #kde-gerrit and #trojita. Configuration of this bot
and channel-to-project mapping will be handled in the same was as any other project metadata.
Because the data will be stored in a Git repository, users will be able to propose changes to them
and their validity will be checked by Continuous Integration and the regular code review process.

3.2.11 Bugzilla Integration

There is much more to bug tracker integration than just sending e-mails. Typically, a bug tracker
and a code review system focus on different groups of users and have different UIs to reflect this
difference. It is common to have a discussion starting at, say, Bugzilla where we try to reproduce
a bug. When a patch is written, we have to check not only whether it fixes a bug, but we have
to also make sure that the patch in question fits the project, and whether it fixes the problem
correctly.

A patch under review should be visible from the bug tracker so that interested parties or power
users know that some work is going on. This might be combined with automatically modifying a
bug’s status so that it’s clear that it is not an unconfirmed report anymore, but rather something
which is worked on. When a patch gets merged or when it is decided that it is not actually a
good fit for the problem at hand, this should again be made obvious in the issue tracker’s UI. The
amount of notifications should be kept to a reasonable state. The users in particular typically
have no intention in following developer’s discussion about coding style.

In a similar manner, the patch review UI should not just say “this fixes bug 123456”. The
information about the associated bug(s) should be made in a visually pleasant way, and all required
information such as a bug summary should be visible right in the tool’s UI, without any extra
mouse clicks.

KDE’s current setup relies on e-mail hooks which fire when a patch gets merged into any branch
of the target repository. This leaves much to be desired; Bugzilla and Reviewboard remain two
isolated islands that are only connected through hyperlinks. Another problem of this approach is
that only commits by KDE developers can actually close bug reports. When a KDE developer
merges a commit done by a third-party, perhaps when merging a pull request, a bug won’t be
closed despite a proper BUG: keyword.

In KDE’s Gerrit deployment, we added JavaScript code which relies on public APIs of both
Gerrit and Bugzilla to provide interactive previews of the information stored in the other system.
For developers, nothing is changed and they rely on the familiar BUG and CCBUG keywords. Gerrit
pulls live data from Bugzilla, which is why a merged change in Gerrit correctly shows the bug as
RESOLVED FIXED.

A similar integration was added to Bugzilla. The current version was designed to require
minimal modifications to our instance. In particular, we did not want to add another custom
field to the Bugzilla installation, or to inject JavaScript in there. The demo therefore relies on a
client-side GreaseMonkey script for including the required JavaScript.7 If the proposed system is
approved and gets rolled out, no user-side changes will be required. The total maintenance burden
of these extensions and the level of complexity is similar to using a modification of an existing
Bugzilla theme.

We propose to use Gerrit’s its-bugzilla plugin for making modifications to bugs when a
change gets uploaded for the first time, and when it gets merged. Should KDE ever migrate to
another platform for issue tracking, Gerrit ships with plugins for interacting with Jira, Phabricator
and others. Adding support for more bug trackers is easy because a common core is cleanly
abstracted away. The JavaScript integration bits which are Bugzilla-specific comprise a single
AJAX call, and can be easily replaced in future.

The plugin is configurable on a per-project basis. To provide just a small example, it is possible
to e.g. enforce mandatory presence of BUG keywords on release branches, or to specify that only
patches merged to a stable branch will update Bugzilla records. We do not expect to need such

7Download from http://jkt.flaska.net/gerrit-bugzilla-userscript.js.

7

http://jkt.flaska.net/gerrit-bugzilla-userscript.js

Showing live Bugzilla data within Gerrit at https://gerrit.vesnicky.cesnet.cz/r/342.
See https://gerrit.vesnicky.cesnet.cz/r/1 for rendering of non-existing bugs.

Bugzilla showing links to commits under review in Gerrit

8

https://gerrit.vesnicky.cesnet.cz/r/342
https://gerrit.vesnicky.cesnet.cz/r/1

an advanced (and maybe annoying) configuration within KDE; the above is just to offer a glimpse
of the level of functionality which is supported.

3.2.12 Project Management

There are many possible meanings of a “project management”. In the existing KDE’s setup,
various roles are handled by Redmine/ChilliProject. It is not used for release planning, issue
tracking, Gantt diagrams, file hosting, wiki pages nor any additional fancy purposes. Redmine’s
role is limited to act as a project browser, Git repository viewer, and a tool for storing additional
metadata such as a proper place of the project in KDE’s project groups (implemented as a custom
patch).

Right now, KDE uses two essentially separate project organization concepts. At one layer, the
list of projects is flat, with no hierarchy and no namespacing. All project identifiers (repository
names) must be unique within the whole set. At another layer, the entire family of KDE projects
is split into a tree. The top-level entries such as frameworks/ or extragear/ can be further
divided into e.g. extragear/graphics/ or extragear/pim/. Interestingly enough, the KDE
Frameworks’ concept of Tiers is not contained in this hierarchy and all KF5 projects are called
just frameworks/something.

The philosophy of Gerrit is to store as many data as possible in Git repositories. A project’s
permission configuration is stored in a special file within the refs/meta/config Git branch. The
same space is also used for various plugin-specific option storage.

We therefore propose to use the same place for storing arbitrary information that is needed
by the rest of KDE’s infrastructure. Benefits of such an approach include being able to treat
modifications in the same way as patches to code – simply submit them for review, and let project
maintainers approve, improve or reject these. A Continuous Integration setup can verify these
changes for sanity, as well as be used for preparing a pre-generated kde_projects.xml file. All
sorts of data, including long descriptions, stable branch assignments or localization options will
be stored there. Metadata such as active status of the project will be generated based on Gerrit’s
native features for project enabling/disabling.

The missing bits, compared to the current solution, is mapping of people to project maintainers.
These bits will be moved to LDAP where a group will be created for every project that needs
special attention. From earlier discussions on kde-core-devel and kde-scm-interest, it appears
that the intention is to keep all developers equal, and explicitly listing maintainers will serve no
additional purpose. If this analysis is wrong, a list of maintainers can be added without any
difficulty.

3.2.13 Audit Hooks

Audit hooks refer to a set of validators and helpers which are run during each push to KDE’s Git.
Their purpose is to serve as a rudimentary sanity check to ensure that obviously wrong stuff won’t
make it to our Git servers.

Gerrit does support running of hooks that are capable of rejecting a particular commit. We
could therefore take the existing hook setup as-is and simply call it from within Gerrit. However,
Gerrit also offers native support for majority of this functionality, and adopting native features
appears to be a better solution in the long run.

Gerrit has, for example, native support for commit blacklisting. Even the API to control
which commits are to be always rejected during a push is very similar to KDE’s existing setup –
a new command is ssh user@gerrit ban-commit $project $commitSha1. As a nice bonus, the
command accepts a --reason option which can be used as a human-readable message to explain
to users what to do if they accidentally push a blacklisted commit again.

Similar check applies to e-mail validation. An ACL verifies whether an e-mail matches one of
user’s registered address. These addresses are either read from LDAP, or validated by a mail probe
to make sure that they actually exist and belong to the user in question. This validation can be

9

configured on an LDAP group basis, so it is possible to allow KDE developers to push commits
on behalf of third-party contributors while preventing regular users from faking their identity.

Commits can be rejected early if they include an “obviously wrong” file name, etc.
More serious checks are supposed to be integrated via the code review system. That way we

can have sanity checks on e.g. Tab characters for projects which settled to use all spaces for
indenting, or Krazy runs to provide an early EBN coverage.

Another improvement is building an audit trail via Git notes. KDE’s Gerrit is already config-
ured to make use of this feature. Here is how a typical record for a change looks like:
Notes (review):

Verified +1: KDE Zuul CI
Code -Review +1: Thomas Lübking <thomas.luebking@gmail.com >
Code -Review +2: Marko Käning <mk-lists@email.de>
Submitted -by: Jan Kundrát <jkt@kde.org >
Submitted -at: Mon , 19 Jan 2015 19:07:43 +0100
Reviewed -on: https :// gerrit.vesnicky.cesnet.cz/r/339
Project: trojita
Branch: refs/heads/master

These data are available to regular users via another Git ref. This is a standard Git feature,
and users who are interested in this can read these data through e.g. git log --notes=review
invocation. Users who have no use for this do not fetch these data by default.

3.3 Continuous Integration

This section proposes an ambitious plan of replacing our Jenkins instance with an alterna-
tive. It is by no means a requirement to apply this part of proposal in order to work with
Gerrit. Gerrit will work just fine with Jenkins as well. Please see the rest of this section
for rationale on why we suggest this change. Also note that KDE’s existing build scripts
and Scarlett’s work on Jenkins cleanup and Marko’s OS X CI efforts will remain relevant
even if this proposal is accepted.

KDE has been traditionally using Jenkins, an industry-standard for automated builds. Over
the years, custom scripts were written for managing dependencies and for launching build jobs
with multiple configurations. However, the way in which Jenkins is used actually does not make
use of many of Jenkins’ advanced features. Even a Git workspace preparation is handled by a
custom shell script, and build artefacts are saved using a manually managed rsync depot. As of
2014-2015, the main role of Jenkins is to serve as a way of launching jobs on remote servers, and
for providing an overview of whether a last build failed.

In Jenkins, build jobs cannot be easily defined in a declarative manner. Various solutions exist
for managing the pain of uploading XML scripts over a web interface. As of early 2015, none are
deployed by KDE yet. Other projects are struggling with Jenkins in a similar manner with various
level of success. It is common to hear “today we would do it differently” when discussing mature
Jenkins deployments.

A serious CI covers more than just launching a job and reporting back a result. If a change is
proposed to Git, chances are that another change will land before a developer reviews the original
patch, or that the contributor used a week old checkout as a basis of her work. It is therefore
important to not check the change as-is, but rather test a future result of the change merged to
the current state of the Git repository.8

It is also not enough to test a result of each git push. Developers all make mistakes, and it is
pretty common, especially when rebasing locally, to introduce a regression by accident, only to be
fixed by an immediate follow-up commit. When such an error happens, it makes it difficult to use
git bisect when looking for (unrelated) regressions because a bisection process gets interrupted

8This is amplified by Git’s emphasis on non-linear histories where the history tree can involve many merge
operations.

10

by a presence of a spontaneous build breakage. A powerful CI therefore must also check each
commit separately and make sure that it does not break the build or the unit tests.

In addition to that, some projects have dependencies on other projects. It is desirable, if the
HW resources allow, to verify whether a change in a shared library breaks its consumers. While
it is not realistic to do this for each commit to a Qt mirror or a core library such as kdelibs from
KDE4 times, there are situations where the cost is not prohibitive as the space of dependencies is
reasonably sized.

The OpenStack project has tackled these issues with Zuul, a build job scheduler. Zuul listens
to events within Gerrit, merges Git trees, launches build jobs and reports back to Gerrit about
their status. It can be configured to enforce a CI pass; that is, each commit must pass all tests
before a change is merged into Git.

Zuul fully supports parallel execution of build jobs. If multiple independent changes are merged
into Git before a CI run completes, Zuul will speculatively schedule build jobs under an assumption
that an already-human-approved change is likely to succeed. If an unrelated change fails, the
subsequent changes in the testing queue get resubmitted while skipping the commit which caused
breakage. This process respects Git commit parents, so real commit dependencies are handled
properly.

Interested readers are encouraged to check out a description of Zuul’s operation in its excellent
documentation at http://ci.openstack.org/zuul/gating.html. Zuul is not a trivial system,
but the offered feature set and no need to work around Jenkins’ limitations more than offset having
to master yet another system.

3.3.1 KDE’s Use of Zuul

An instance of Zuul has been deployed for use with KDE’s Gerrit. It has been running in produc-
tion since December 2014, verifying builds of a substantial chunk of KDE-Frameworks, up to and
including plasma-framework. The KDE-specific parts of the build are reused from the Jenkins
environment; in particular, the Python scripts and project interdependency data are an important
piece of the functionality. There are no plans to deprecate these in our use of Zuul.

We currently offer builds with Qt 4, Qt 5.2, Qt 5.3 and Qt 5.4, using both release and debug
builds of Qt, with GCC and Clang/LLVM compilers, on multiple versions of Linux. This will be
extended with Mac OS X and Windows builds when time permits and depending on Scarlett’s
and Marko’s results. The only client-side requirement of the current setup is Python 2.7.

The CI results are fed back to Gerrit as a vote against change approval. The setup was able
to identify multiple regressions and breakages in proposed changes.

3.3.2 Test Failures

Some of the automated test are inherently unstable. A common situation which leads to non-
deterministic results are test which talk to a network service. Another case of frequent test
failures are hard-coded delays or timer values. Regardless of the actual cause, an unstable test
suite is a fact of life which must be dealt with by a CI system.

Our Zuul instance is configured to allow developers to request a test re-run by simply saying
recheck as a comment on a change.

The OpenStack’s Gerrit and Zuul setup is accompanied by an automated build log crawler
based on ElasticSearch. This tool analyzes the gathered logs and subjects them to statistical
processing. If a common error pattern is found, developers are pointed to an appropriate bug
number, or at least list of logs which recently triggered said condition. The log harvester also
checks the recheck comments for references to bug numbers for extra context. In common cases,
a developer whose change hit a known bug will be notified by an automated script explaining what
to do, and with a pointer to a likely cause of the failure. This setup is available under Apache2
license, and can be deployed on KDE’s infrastructure if time permits and people are interested.

11

http://ci.openstack.org/zuul/gating.html

3.3.3 Build Warnings

Projects which want to enforce warning-free builds deal with this requirement by appending
-Werror to a reference build profile. The usual approach is focusing on no warnings on the
latest compiler and latest version of Qt. This works well for e.g. Trojitá where we’ve been running
like this for years.

3.3.4 Build Status Matrix and Status Reports

Some of KDE’s projects do not subscribe to the concept of code review. At the same time, it is
crucial for the release team to have an insight into the current status of the code. It would be
suboptimal to release a version of a library with known build failures. While an ideal solution is
mandatory CI verification prior to changes being merged, this is not realistic to request from all
KDE projects. As such, build results have to be tracked, and a dashboard of their status needs
to be provided.

A simple dashboard consisting of static JSON files gathered from builds which are triggered
during each ref-updated build will be provided. The complexity of this setup is expected to be
a small fraction of e.g. project dependency handling.

3.3.5 Third-Party Continuous Integration

Another feature not easily offered by Jenkins is support for a Continuous Integration feedback
from interested third parties. In order to interact with Jenkins, a third-party service would have
to gain a privileged level of access, something which might be hard to justify due to the associated
security risks.

In contrast to that, anyone can vote in Gerrit, and people are free to consume events from the
Gerrit event stream via e.g. ssh bot@gerrit stream-events. This has been demonstrated by
the OpenStack project to scale quite well. Relevant examples of applications of this feature are
enthusiastic users who are willing to e.g. test a subset of KDE projects on an exotic operating
system or on a hardware whose capacity would not be able to accommodate the whole of KDE.
To give a specific example, it probably makes little sense to test all of KDE on Android phones,
but certain applications which already offer an Android UI would immensely benefit if they were
subject to CI on that platform.

4 Additional Services
Because Gerrit focuses on code hosting and repository management, it does not provide features
such as a bundled issue tracker, or a task management system. When evaluating competing
infrastructure services, it is important to always compare full stacks of what it takes to provide a
given level of service.

An often heard argument is that the fewer separate services are needed to provide a fixed feature
set the better – especially for maintenance reasons. In this context, we should always estimate
an actual price tag of each service’s maintenance. Deploying and maintaining five services where
each require 10 minutes of work each month is actually better then taking care of a single service
which needs an hour of babysitting over the same time. The cost of the initial deployment has to
be factored in, too.

Service bundling comes with a tax in scalability as well. Depending on the service architecture,
it might be needlessly hard to split the entire infrastructure to multiple machines, or to load-
balance these tools if a need arises as KDE grows.

The takeaway message is to compare actual costs rather than rough estimates, and to
measure rather than guess. First profile, and then optimize.

12

4.1 Integrating Independent Services
The mere fact that our services are provided by different projects do not necessarily mean that
they do not play well with each other. As an example, Gerrit’s web UI was extended to offer a live
preview of build status straight from Zuul. The change was originally authored by the OpenStack
project, and is built in JavaScript to embed a continuously-updated JSON status report into
Gerrit’s main pages. As a result, once a change is uploaded to Gerrit, a live preview of the build
status is visible on the review’s web, and this review gets updated to include the actual build
result in real time.

We implemented a similar thing between Gerrit and Bugzilla, again using a JavaScript ap-
proach. The integration goes beyond simple hotlinks common with other solutions. The web
applications are complemented by modular JavaScript code that fetches data from the other ser-
vice, integrating them back with a native look and feel. There is no need to maintain a possible
fragile synchronization because data are always fetched from their corresponding origin as needed.
The developer experience remains unchanged and relies on the well-known BUG and CCBUG key-
words. See section 3.2.11 for screenshots and additional information.

A similar extension can be written when KDE adapts e.g. a Trello equivalent.

4.2 Single Sign On (SSO)
Chances are that we will always have to run more than one service. While having a single set of
credentials to use over the whole KDE infrastructure is nice and almost possible today,9 it is not
a full answer to this problem. Users still have to enter the same passwords to various login boxes,
and it is hard to be sure that each service to which one is logging in is a secure and official one
provided by KDE.

The usual answer to this is some sort of an SSO (Single Sign On) approach. Each web page
which requires a login would typically redirect its users to a single, central place to enter the user’s
credentials. The result of a successful authentication is a short-lived token which is automatically
passed to the original service, and that service can use the identity vouch embedded in the token
to authorize the user’s action. Similar tools which hand out tokens exists for console access as
well.

This proposal does not pick a favorite SSO solution. Adopting SSO is proposed for a later
time, when resources permit.

4.3 Improvements to Task Tracking, Bug Reports and Issue Manage-
ment

We are no experts on Kanban task planning or tools for agile development and scrum meetings.
We will not discuss various existing tools which could be used for these purposes. These topics
are a prime example of an area which is still under development, and no clear and free winners
have emerged so far. Rather than tie in with a single solution which might not be a best one in
the long term, we would like to propose to remain open to various alternatives at this point.

One promising example is StoryBoard,10 an application designed to keep all aspects of user
and developer stories and to tie them into project’s development process. It will be worthwhile to
keep an eye on its development and possible adoption.

9Bugzilla and Mailman are two notable exceptions. Each of them requires its own separate login credentials
right now, and fixing this could be a non-trivial problem.

10See https://wiki.openstack.org/wiki/StoryBoard

13

https://wiki.openstack.org/wiki/StoryBoard

5 Managing Infrastructure as Code

This is an optional part of this paper. We have no intention to push unwanted changes to
people doing the work — we are just offering help. The proposed solution will reduce the
time needed for infrastructure maintenance in the long run. We are sharing information
about what has worked well for others who have been solving a similar problem. Other
solutions to this problem are possible — we had to pick and use one approach.

While following this approach is by no means necessary for modernizing our infrastructure
and improving the developer experience, all of the scripts and configuration recipes have
been written and debugged and are now ready for use. As such, adopting this approach
for areas covered by this proposal will not constitute additional work.

A question of whether to use a configuration management system for the rest of the KDE
infrastructure is outside of scope of this paper. In particular, we are absolutely not pushing
for adoption of our favorite tools. If KDE was already using some tool for configuration
management, we would have simply followed suit.

This section talks about a proposal for switching away from manual service administration and
maintenance, and calls for embracing some popular, widely deployed configuration management
system. The idea is to start with an empty, minimal install of a Linux distribution, and write a
program in a declarative language describing how the end result should look like. This approach
puts emphasis on the expected final state, and delegates actual work to mature, battle-tested
utilities.

Providing even a gentle introduction to this area would make this text much longer. Rather
than doing a poor job of explaining the technical details in an extremely incomplete manner,
let us emphasize the following bonuses which one gets by adopting such an approach to system
management:

Repeatability The entire configuration is described in a set of files saved in Git. The tools guar-
antee that no steps which are needed will be skipped when a server needs to be reinstalled.

Audit It is easy to tell who changed what because the data driving all actions are stored in Git.

Transparency Everything but secret keys and passwords can be safely made available to the
community, and community can help by offering specific suggestion as patches. This is a
development process which we all know and can follow.

Scale It doesn’t matter whether a configuration is applied to a single machine, or to hundreds of
VMs in a cloud. The tools are built for scalability.

Modularity Configuration can be split into reusable modules, similar to how we use shared
libraries for repetitive or low-level tasks. Need to backup a box? Write that code once, and
parametrize the backup setup with e.g. a list of directories. Got to back up an SQL database?
Add parameters for DB name and login credentials, and write that pgdump-launching cron
job once.

The most common heard objection is “we only have a couple of servers”. Most of the advantages
listed above however apply to each-server-is-unique deployments as well.

The future is not all bright, of course, and there are also dangers inherent to adopting a different
approach to what one has been doing for years. It is also easier for an “innocent mistake” to take
down a substantial chunk of one’s infrastructure. As usual, careful testing, a staging environment
and peer review of code can mitigate most of these risks.

Making one-off changes with a configuration management system is usually a slower operation
than sshing into a machine and editing files by hand. The small decrease of speed however pays

14

off as soon as some new member joins the sysadmin team. A unified structure of configuration and
common patterns help newcomers navigate the jungle of complex setups and service interactions,
and assist people make correct changes at the right places.

The situation around infrastructure-as-code approach is similar to programmers’ view about
unit tests and source code versioning. There are some excellent programmers out there who do
not write test cases. There are also excellent programmers who do not put their code into a SCM.
However, there is only a very small set of programmers who have already tried a SCM such as
Git, yet choose not to use one for their work anymore.

5.1 Choice of Tools
There are several high-profile contestants in this area, and we had to choose one for implementing
our proposal. KDE does not currently use any such system, so there were no considerations for
picking a particular tool to align with the rest of the infrastructure. Due to prior experience and
knowledge and thanks to its adoption within the OpenStack Infrastructure team, by Digia’s CI
infrastructure and many other high-profile projects including CERN, we chose to use Puppet.

All services which are covered in this proposal, including Gerrit’s installation and configu-
ration, the entire Zuul CI deployment, all IRC notifiers etc., are covered by Puppet manifests.
These installation and configuration scripts serve as basic documentation, and make it possible to
redeploy the entire setup quite easily.

Our reasons for picking this Puppet approach were quite simple – we were looking for some
tools to use for repeatable deployment, and Puppet manifests proved to fit the job pretty well.
Had KDE used something else already, we would have followed suit. There is no intention to push
something over to the KDE sysadmins; Puppet was just a tool which we used to let our job done.
We expect to use Puppet for this deployment of the infrastructure, if approved, because it will
make a KDE-wide adoption require less time.

6 Possible Alternatives
A prominent alternative proposed by KDE’s sysadmins is deployment of Phabricator. Please see
their original proposal and the kde-core-devel archives for a discussion about its merits, as well
as for a list of other possible alternatives. We are deliberately trying not to evaluate Phabricator’s
performance or suitability for KDE in this document. We have no practical experience with it at
this time. A detailed plan for its adoption and a roadmap for fixing the missing bits would have
to be provided before it can be considered for migration.

7 Conclusion
This paper presents a vision for how a next generation KDE infrastructure can be implemented. It
does not build on a green field, but rather reuses a proven architecture which has been field-tested
by the OpenStack Infrastructure project.

We describe how a set of independent yet well-integrated tools can together provide an infras-
tructure which is easy to use and maintain. A proof-of-concept trial has been running within KDE
since September 2014 with excellent feedback from all participants so far.

It is our belief that the setup described in this paper is capable of handling KDE’s needs, and
we recommend to evaluate this architecture as an alternative to a possible adoption of Phabricator.

15

8 Summary of Required Future Work

The following list summarizes what has to be done in order to enable all features described
in this proposal. It is built on a real experience with the tools in question. This means
that the list is very close to being exhaustive; we do not expect additional major items
to appear. In particular, this is not just a list created after a high-level documentation
reading.

Everything else which is proposed in this paper but not explicitly mentioned as a work
item below has been already implemented, and is now ready for immediate deployment. A
realistic estimate is that migration of all KDE Git projects can be completed well within
a month, including testing and verification periods and a staged migration.

• Install gerrit-patch-uploader (see 3.2.1)

• Debug script for self-service repository creation (see 3.2.3)

• Write documentation about a Workflow label for “clones” (see 3.2.4)

• Write script for syncing SSH keys to Gerrit (see 3.2.8)

• Extend Gerrit with support for e-mail notifications about direct pushes (see 3.2.9)

• Configure IRC bot to notify about commits as well (see 3.2.10)

• Configure the its-bugzilla plugin (see 3.2.11)

• Install JavaScript add-on for querying Gerrit to bugs.kde.org (see 3.2.11)

• Documentation: improve KDE-specific tutorials and best-practices on how to work with
Gerrit effectively

• Write script generating kde_projects.xml (see 3.2.12)

• Dashboard indicating state of the CI (see 3.3.4)

• Bootstrap KDE’s Puppet and import the already-developed Puppet configuration in there
(see 5)

About the Author
Jan Kundrát has been a KDE developer since 2007. When he is not busy programming Trojitá,
automating large infrastructures or messing with build systems, he likes photography, hiking and
other sorts of outdoor activities out in the woods and up in the mountains. Between 2006 and
2012, he was on a team dealing with a 350+ node cluster; the servers were processing scientific
data originating at the CERN’s LHC accelerator. At that job, Jan was driving a successful effort
of switching from ad-hoc manual administration to a cfengine based automated setup. Since 2013,
Jan has been running a public cloud service based on OpenStack.

16

	Pain Points of the Current Setup
	Why Gerrit?
	Technical Solution
	Identity Management
	Git Repository Hosting
	Code Review
	Conflicting Changes
	Scratch Repositories
	Personal Clones
	Repository Browsing
	Post-Commit Review
	Anongit – Replicating for Read-Only Git Mirroring
	User Management
	E-mail Notifications
	IRC Notifications
	Bugzilla Integration
	Project Management
	Audit Hooks

	Continuous Integration
	KDE's Use of Zuul
	Test Failures
	Build Warnings
	Build Status Matrix and Status Reports
	Third-Party Continuous Integration

	Additional Services
	Integrating Independent Services
	Single Sign On (SSO)
	Improvements to Task Tracking, Bug Reports and Issue Management

	Managing Infrastructure as Code
	Choice of Tools

	Possible Alternatives
	Conclusion
	Summary of Required Future Work

