
Making Plasma Mobile
highly configurable
The introduction of principal concepts, in particular the “Swipe to Resize Panels”

by Alex L.

Introduction
Plasma Desktop is an highly configurable desktop environment. It provides by default a
simple configuration with a bottom panel, a task manager, a start menu and a sys-tray
area. Thanks to this default configuration it's easy for Windows user to switch to
Plasma. But user can configure Plasma a lot: for example he could add a panel on the
top with app-menu like OS X. Or he could add a left-side panel with an icon-only task
manager like Ubuntu Unity's one.

The mobile world have develop its own interaction language: Android have a well-known
UI/UX and Google stress a lot its importance with Material Design. But there are also
other actors: Jolla Sailfish OS and Windows Phone for example provide their own
original UI/UX.

Plasma Mobile should have the same role of Plasma Desktop in PC's world: it should
have by default a well-know behavior, so who knows Android does not have problems
using Plasma Mobile as Windows users with default Plasma Desktop. But Plasma
Mobile should also been highly configurable so that the user can recreate (partially or
totally) Sailfish OS or Windows Phone experience on his/her device.

A first problem: integration between system and apps
In PCs' world, applications live in their windows and their system integration consists in
communications between them and the system (i.e. notifications protocol). In mobile
world things aren't so easy: system UI/UX necessarily affects apps UI/UX and vice
versa. How Android solve this? It provide two always visible bars: notifications/status
bar on top and system buttons on bottom. It's also a standard that Android's apps
reserve to their selves the left and the right edges of the screen. How Plasma could

combine highly customization of UX with a contract with apps? Assigning bottom and
top screen edges to system and left and right to apps is too much restrictive.

The solution: the S2RP and controls exported to plasmoids
My proposal is to reserve all
screen edges to the system, in
particular to Plasma's panels. It's
time to introduce the “swipe to
resize panel” (S2RP) options for
panels: the idea came to me trying
to combine Android notifications
bar with a Plasma panel. In fact a
panel with S2RP enabled behaves
like Android notifications bar: it's
resized with a swipe. See the
image below.

As you can see in the following mock-up, the small icons in the panel are resized
together with the panel, so the user can switch between the tabs containing
notifications, Internet and volume controls, etc.

But the S2RP is not reserved to notifications panel: it could be use also for task
manager as you can see in the mock-up below:

But the behavior of a panel with task manager plasmoid is different from the
notifications one: the user resize the panel with a swipe but when the user release the
his finger the panel stay at the size reached, so the user can tap on the icons, that were
too much small when the panel was at its original size. Additionally, if the swipe exceeds
a certain dimension, the panel show running apps preview, as you can see in the end of
the mock-up. Finally the panel can be resized to its original dimension with a swipe
down. In the mock-up the KDE icon show start-menu/app-drawer and Plasma icon show
Plasma home (like Android's home button).

Additionally, if the user put a
plasmoid in the left corner of the
panel and an other plasmoid in
the right corner, what the panel
show when resized depends on
where the swipe is made: if the
swipe start in the left half of the
panel plasmoid in left corner are
shown, if the swipe start in the
right half of the panel plasmoid in right corner are shown.

But with this concept, how can apps, for example, draw a side app-menu like Android's
one? All screen edges are reserved to system. So we need to export something from app
to system. The following mock-up show how this is made on Plasma Desktop and how it
could be made on Plasma Mobile.

In this example left-side and right-side panels have “auto-hide” option enabled: they are
hidden but a swipe from the edge of the screen show them.

Additionally, this could be a good way to provide a touch-oriented app-menu for legacy
desktop app. In the following mock-up you can see Konsole and its classical app-menu
with a touch-oriented aspect. The app-menu is a plasmoid added in the left corner of the
top panel and is shown with a swipe in the left half of the panel.

In the mock-up there is also a close button on top and actions shortcuts in the bottom
of the expanded panel.

This approach could be convergence-ready: if the user plug his smartphone to monitor
and mouse, the app-menu plasmoid could be expanded on the panel to appear like
classical desktop app-menu (like OS X's one), similar to menu of responsible web pages.

Conclusion: the swipes that start from the screen edges are reserved to Plasma panels
and other swipes are reserved to the current app (for example to switch between tabs).

Plasma Mobile pages
Basically in mobile world there are three approaches to “home”: horizontal pages
switchable with horizontal swipes (Android approach), vertical scroll of elements
(Windows Phone approach) and complex pages switchable with four-directions swipes
(Sailfish approach).

My proposal for Plasma Mobile is to combine these three approach: a grid of pages
switchable with swipes but customizable by the user and an optional container plasmoid
(in which user can add plasmoids) that provides vertical scroll.

In the following mock-up you can see a simple configuration of the pages: three pages
similar to Android home and a lock-screen page. Aside you can see the how the user can
add/remove/move pages and able/disable links between them.

The user could also link a page to an app that will be start when the user switch to its
page: for example a dialer page, or a camera page aside the lock-screen. Obviously when
an app are started the swipe is reserved to it and the user can't come back with a swipe
as in standard pages.

Vertical-scroll container plasmoid
As I said, the vertical scroll is provided by an optional container plasmoid: the user can
add a vertical-scroll container plasmoid and the he can add in it all plasmoids he wants.

Example configurations

	Introduction
	A first problem: integration between system and apps
	The solution: the S2RP and controls exported to plasmoids
	Plasma Mobile pages
	Vertical-scroll container plasmoid
	Example configurations

