
Smart Lineart: AI-Assisted Inking
Short description
The goal is to create a tool for artists that converts a sketch into a lineart. Under the hood the 
tool will use a neural network for conversion. It will only contain convolutional layers and it 
should allow for customization of the output (line thickness, brush style etc.).

Purpose
The intent of this project is to provide artists with a quick way to convert their sketches into high 
quality lineart.

The process of creating a lineart from a sketch is often tedious and, depending on the artstyle, 
may not have that much creative or artistic thought behind it, which makes it perfect for 
automation.

Currently, without any automation, the usual process for an artist look like this:

1. Making a sketch.

○ Depending on an artist, it can be more rough or more precise. We are only 
considering precise sketches here. They don’t need to contain all the details, 
though.

○ It is usually either made with lower opacity brushes, or pencil-like, textured 
brushes.

2. Drawing line art over it, using stabilizers to ensure nice, smooth lines. It’s common to 
either add details or fix some mistakes of the sketch at this stage.

3. (Optional) Add color and post-processing.



Our solution will aid at drawing the lineart. Note that the artist will know in advance that they’re 
going to use a tool, so we can assume that the sketch will be the most suitable for automated 
inking: it will not have any shading or cross-hatching, and it will not have any more mistakes. 
The artist will be able to fix mistakes on the final lineart, or go back to the sketch layer, fix the 
sketch, and run the automated inking tool again. The artist will likewise be able to add more 
details to the lineart using a suitable brush for seamless look, and proceed to the next stage of 
adding colors and post-processing as usual.

To be successful, the tool must create smooth lines and the result must already look good 
without any changes. It should simplify the sketch by merging lines that are close together, and 
it should drop any lines that are very faint.



Requirements
The main idea of implementation comes from the article ”Learning to Simplify: Fully 
Convolutional Networks for Rough Sketch Cleanup” by Simo-Serra and Iizuka, 2016, 
https://esslab.jp/~ess/publications/SimoSerraSIGGRAPH2016.pdf. However, due to the fact that
we want to apply it to practical use, there are several places where our goals differ from the 
authors’.

● Common goals:

○ it can be used on an image of any size (therefore we should avoid fully-
connected/dense (even with dropout) layers, and the network should be fully 
convolutional);

○ it should merge multiple sketch lines into one;
○ it can work on a desaturated version of the sketch (note: needs to be proper 

desaturation, based on HSY’ or similar, not on HSV);
● Difference in output requirements:

○ the result should be appealing enough to be left as the final lineart in the painting 
(note that the results in the article looked more technical, but that was also 
apparent in the dataset they used; using more artistic target images should result
in more appealing results from the trained network as well);

○ the lineart that it produces doesn’t require it, but can be further edited by the 
artist (in fact, a workflow of converting the sketch into a lineart, coming back to 
the sketch to change some details, and converting it again to a lineart should be 
possible);

○ it doesn’t need to handle shading, crosshatching and similar features of the initial
sketch: the most common usecase would be to create sketch and immediately 
turn it into lineart, and artists will know this and draw sketches that give the best 

https://esslab.jp/~ess/publications/SimoSerraSIGGRAPH2016.pdf


results (and not confuse the algorithm);
○ There must be a way to customize the result: thickness of lines, the style of lines 

etc.– which notably wasn’t addressed in the article and isn’t trivial to add, but 
seems necessary for our project;

● Difference in performance requirements:

○ it should allow processing the image on all kinds of CPU, and preferably on a 
wide range of GPUs;

○ it shouldn’t take more than, let’s say, 1GB, or maybe 2GB of memory – both on 
GPU and CPU, on GPU due to hardware requirements (see 
https://store.steampowered.com/hwsurvey/, and on CPU because RAM is used 
by every other program on the system and the free space might be limited as 
well;

○ processing the image shouldn’t take longer than a minute on a standard laptop;
○ we can assume A4 300dpi as the default, but not only image size, and optimize 

the method to work best for people using that size in particular. Note that the 
bigger the input image is, the bigger the amount of memory needed for inference,
which is why we need to limit the amount of memory needed to minimum (for 
context: the article’s network, without any optimizations, can infer A4 300dpi 
images using  5GB of memory, and nearly 20GB for A4 600 dpi).

Model
Note that since models are often interchangeable (many neural networks libraries can load 
neural networks from other libraries), we can separate training from usage in Krita.

Training

I suggest making Python scripts using PyTorch library. It’s a well-known, good library for 
machine learning and neural networks.

Inclusion in Krita

It seems like the best approach would be to include either just OpenVine, or ONNX with 
OpenVine included as a backend for ONNX. That will make sure that our users can use this tool
on all kinds of hardware.

Estimated effort
The project consists of three parts:

1. Pre-production and experimentation

○ Creating Python scripts for the network and training.
○ Experimenting with different network sizes and shapes to find the one that best 

fits our use case.
○ Experimenting with different solutions for the line thickness and brush styles.

2. Training the network.

https://store.steampowered.com/hwsurvey/


3. Implementing a way to use the network in Krita.

Note that the part 2. and 3. can happen simultaneously. Developer’s time is required in parts 1. 
and 3., while training time is required in parts 1. and 2.

Training time can be estimated based on the article, where the authors mention that training the 
network took 3 weeks of training on Titan X GPU. Today’s best GPUs are significantly faster, 
and I suspect our network will be smaller, but we also need to account for experimentation and 
the addition of complexity due to line thickness and brush style.

I would estimate whole training time to take 6 weeks on Titan X, which means for example 2.5 
weeks on Nvidia Quadro RTX A6000, or 3.4 weeks on Quadro RTX 5000, or 1.2 weeks on 
Nvidia RTX 4090, though of course that’s all based on benchmarks (I used 
https://gpu.userbenchmark.com/Compare/, which is for general or gaming purposes, not neural 
networks, but it’s a good resource for consistent results). Note that we should know the 
estimated final training time after the experimentation stage, knowing both the size of the 
network and the GPU, and after already training the network for several epochs on that GPUs.

Dmitry estimates Part 3. to take two months (one for OpenVine and one for ONNX Runtime, 
assuming we’ll use them both). Part 1. should take around another month or two.

To sum that up:

● Training time (time required from GPU): probably around 3-4 weeks, depending on the 
GPU

● Development time: 4 months.
● Total project time: 6-10 months (the higher estimation is to account for unknown 

unknowns).

I do want to emphasize that this is still a very tentative, preliminary estimation.

Note that training time on modern fast GPUs is reasonably ”cheap”, with 1-2k euros per month, 
so the upper bound of training cost should be around 3k, but more likely it would amount to 
maybe 1.5k.

https://gpu.userbenchmark.com/Compare/


Technical Appendix

The fully convolutional layers is a good idea due to being very tolerant to all sorts of input sizes.

Short description of convolution

Mathematically, a convolution kernel is a matrix of size k × k × n × m (which you can see as m 
kernels of k × k × n size), with input of size a × b × n and output of size a′× b′× m. The kernel 
takes a k × k × n portion of the input, multiplies item-by-item, and sums up everything. Since 
there are m of those 3D kernels, you get m output variables for every k ×k ×n portion of the 
input. The usual value for k is either 3 or 5, and n and m depend on how deep in the network the
layer is located (usually if it’s in the middle, it has the biggest values of n and m). This is how 
you get one ”pixel” of the output: a matrix of size 1 × 1 × m.

How the k × k × n portions are selected is defined by stride and padding. Stride defines how 
many ”pixels” the kernel will skip when moving to the next portion of the input. The usual values 
for stride are 1 (which keeps the input and output sizes roughly the same), 2 (which skips every 
other ”pixel” and makes the output size roughly half the size of the input), and 1∕2 (which 
doubles the output size). Padding on the other hand is used to ensure that the output sizes (a,b 
and a′,b′) are exactly the same, twice as big or half the sizes of the input sizes by adding zeroed
”pixels” around the actual input.

Challenges
Choosing the right network



Considering that we’re proposing to be using a fully convolutional network, there is a hard limit 
on how many pixels it ”sees” at once. That number is equal to:

where 

is the kernel size of the i-th convolutional layer. Further I’ll refer to that number as frame.

There are three main parameters of the network: the number of layers, the kernel sizes, and the
third dimensions of the kernels.

Using a bigger network can ensure that learning the task is possible, and improve the results. 
On the other hand, especially if the frame is too big in comparison to the level of detail and the 
sketch brush thickness, the network might have a harder time to generalize. Moreover networks 
with more layers will take not only more time and more memory, but also more iterations to be 
trained1 .

Smaller networks might learn faster and easier, but might also not fit all the learning data.

The network described in the article

The obvious choice would be to choose the network described in the article we base our work 
on (Simo-Serra 2016).

That network has twenty three (23) convolutional layers with ReLU as an activation function 
(one 5x5, three 4x4, and nineteen 3x3), it uses a custom loss function with a loss map, Adadelta
as the learning method, and batch normalization layers to speed up the learning process.

The network is pretty big – in the standard state, using floating numbers, it requires over 5GB of 
memory to infer a single A4 300 dpi picture with just one channel (grey). It doesn’t fit our 
restrictions. The network can be quantized, reducing the memory usage, however that 
introduces a risk: all quantization have a much higher chance to reduce accuracy than to 
improve it, and there are cases when standard quantization methods don’t work well for a 
specific network. It’s a fairly new topic of research as well.

Therefore, we might want to consider using a smaller network. Authors of the article mentioned 
neither experimentation nor thought process in regards to the size of the network, so we can’t 
use that for estimation of the best size for our purpose.

Using a custom-designed network

Such network should still be based on the same principle, which is fully convolutional neural 
network, with ReLU and sigmoid activation layers and batch normalization.

What we could change is:

● number of layers,
● depths of kernels,



● loss map.

Different number of layers This leads to a smaller frame. That might be desirable or not.

The frame on the original network is, as far as I can tell, exactly 51 pixels. That might actually be
too little, concluding from my talk with an artist, so I don’t think we should lower the number of 
layers, if anything, maybe even increase it.

Different depths of kernels This doesn’t change the frame, but does change the number of 
parameters, leading to a bigger or smaller capacity of the network and bigger or smaller 
memory usage. I think this should be the first thing we should reduce.

Different loss map That doesn’t change the network size at all, but affects the learning process.

The loss map was selected to make the learning process not focus too much on the thick lines 
(on the target image), but strike a balance between thin and thick lines. The authors of the 
article say that without the loss map, the learning process took longer. Question remains 
whether it really is necessary in our case, but the difference in speed were significant enough 
that we might want to keep the loss map defined the same way.

Brush size/line thickness

There are several ways to add line/brush thickness to the network.

The standard practice would be to inject this kind of information as an input to a ”fully-
connected” dense layer, but since we won’t have it in our network, we need to work around that 
in some way.

Here are my suggestions:

1. As another channel for the input image (which in our case will have just one channel, 
describing the value of the pixel)

○ Pro: whole network can learn it properly.
○ Con: it will be a huge amount of repeated data, since every pixel will have the 

exact same value in the second channel. And if we wanted to add more 
variables, then there will be more and more channels, with more and more 
repeated data.

○ Con: it doubles the amount of parameters through the whole network (doubling 
the memory, inference/learning time etc.).

2. Inject the data as another channel just before the last layer.

○ Pro: way less parameters.
○ Con: it might possibly not work as well.

3. Train the network on one line thickness, then retrain the last layer on different line 
thicknesses. Then either keep those last layers as separate setting for users to choose 
from, or, preferably, if possible, allow for all kinds of sizes by doing linear extrapolation 
from the parameters of the last layer of different line thickness.

○ Pro: way less parameters.
○ Con: the linear extrapolation is a bit complicated and might not really work as 



expected. I don’t think it’s a standard practice, so it would be a great risk to 
attempt that.

I believe we’ll have the best chance of succeeding by using the method 2., injecting the info into 
the last layer.

Note that for training the network to understand the line thickness, we’d need images with 
particular brush with particular, known brush size. It might be a good idea to train on the same 
sketches with multiple target images of different brush sizes.

Brush preset/style

1. We could have a set of brushes, and a number indicating which brush the lineart should 
be in, the same way as in 5.2.

○ Pro: It’s straight-forward, and might work.
○ Con: The index of the brush in a set won’t be linearly related to the number in the

channel, in the same way brush size is; so learning will be harder.
○ Con: it only allows for specific brushes.

2. After training a network for one brush, we could freeze all layers except for the last one 
and retrain it to for different styles of lineart.

○ Pro: More probable to succeed.
○ Krita will need to keep all of those networks or network layers saved separately.
○ Con: Still only a set of brushes/styles.

3. Ideally, we should inject the picture of the brush (going from 0% to 100% sensors, like in 
Krita’s Brush Editor – it should be trivial to generate from a brush preset) in some point 
of the network. That would allow for usage of all kinds of brushes, even custom ones 
made by users, however it is not trivial to do.
 One idea I had is to change either the last or the one-before-last layer from fully 
convolutional to a custom one, which would contain both a kernel for convolutional part 
and a linear set of weights for the brush style image, and just sum them together. In 
PyTorch, this shouldn’t be difficult to do (from what I gathered, just from using tensor 
operations, the library will know how to do the backward pass itself, and the learning 
process should all work automagically, as with typical layers). It might work, and I 
believe it’s worth checking out. It is a novel idea for a network architecture, though.
 The diagram below shows this idea. As you can see, there are two inputs to the custom 
layer: the input image (result of previous convolutional layers) and the brush image. 
There are two sets of parameters: the kernel, just like in every convolutional layer, and a 
parameter for every pixel in the brush image (note: for this to work, the brush image 
needs to always be the same, known size, since that will be the size of the matrix of the 
parameters). The result of the convolution and the result of the linear layer operating on 
the brush image are summed up together and form the output.
 The diagram is simplified a bit: the input image, the convolutional kernel and the linear 
layer are shown to have no depth. This is to make the idea easier to read and 
understand. The convolution will work as usual, and the linear layer will have the depth 
depending on the depth of the output: if it will be placed in the last layer, the depth will be
1 (to output just the output greyscale image with just one channel), and if it will be placed
in the one-before-last layer, the depth will match the depth of the output of that layer 
(also the output of the convolutional layer) (using the variables defined in 4.1, its depth 



will equal m, and the output of that linear layer will be 1 × 1 × m, and that vector will be 
added to every pixel to form the final output of this custom layer).
 This idea needs to be thoroughly tested as a proof of concept before using it in the final 
project.


