
1

Canvas Interaction for Krita

Introduction

This proposal discusses a change to the way
canvas interaction is handled within Krita. I
will discuss the current situation, a set of pro-
posed changes and how I plan to implement
these changes.

Current Situation

There are currently several actions within
Krita that deal directly with interaction with
the canvas, for example panning, rotating and
zooming the canvas. Currently, these actions
are handled in different ways depending on
what the current tool is and in several cases
are simply duplicated across tools. For exam-
ple, when you want to pan the canvas, you ei-
ther use the pan tool, or you use the panning
"embedded" within another tool. Zooming
can be similarly performed in different ways
while rotating the canvas can be done only by
the pan tool or by using keyboard shortcuts.

This scattering of functions across the differ-
ent tools obviously not ideal. In the long run,
it will only serve to confuse new users and
hamper the work flow of experienced users.
In addition, the code behind it is not really
extensible or modular, which means that the
implementation of new features may be ham-
pered or even impossible.

Proposed Changes

The first and foremost change I propose is to

define a set of universal actions that interact
with the canvas and a default set of short-
cuts for using these actions, trying to stay as
close to current default behaviour as possible.
Each of these actions is discussed below, with
details on how each action behaves.

Once the universal actions have been imple-
mented, I propose to implement a configura-
tion page to configure these actions, specif-
ically to make it possible to assign several
alternatives to these actions. For example,
for zooming, it would be great to be able
to use at least four different methods of in-
put: mouse button and drag, mouse wheel,
keyboard shortcuts and a pinch gesture for
tablets that support those.

Proposed Actions

The following is a list of proposed univer-
sal actions, with descriptions of each action.
They are designed to mostly reflect the exist-
ing actions, but in a more universal way. Each
action also lists the proposed default shortcut
associations. These shortcuts initiate the ac-
tion. Once an action is started, additional
input events will be sent directly to an ac-
tion. This means that, for example, when
you start painting with the Brush tool, the
Tool Invocation action will be started. While
you continue with that action, simply by hold-
ing down the mouse button or pen, all other
input will be sent to this action. As soon
as you release the mouse button or pen, the
action will be stopped and you can start an-
other. This makes it possible for individual



2

Primary Invocation Alternative Invocation Change Primary Setting

Figure 1 Tool invocation with the Brush tool

actions to change their behaviour once they
are started depending on keys, like snapping
to a certain angle for the line tool.

Tool Invocation

Tool Invocation is the action of applying the
current tool to the canvas. While it may not
be considered to be actual canvas interaction,
I have included it to make it possible to cre-
ate a more generalised framework for canvas
input.

Tool invocation is divided into three separate
actions:

• ‘Primary’ tool invocation: Primary tool
invocation simply invokes the tool. So in
case of the Brush tool it will begin paint-
ing, in case of the selection tool it will
begin a selection, etc.
Default Association: Left Mouse Button

• Alternative tool invocation: This is a
generalisation of the ‘colour picker’ ac-
tion currently only available in some tools.
Each tool will get access to this action and
the precise implementation is tool depen-
dant. The default implementation will be
to pick a colour from the canvas, but in-
dividual tools can override this.

Default Association: Control + Left
Mouse Button

• Change tool primary setting: This
is a generalisation of the ‘change brush
size’ action currently only available in the
Brush tool. Each tool will have access
to this action and the precise implemen-
tation is tool dependant. There will be
no default implementation since the tools
are too different to define a common set-
ting to modify. One implementation that
is already defined is to change the brush
size of the Brush tool.
Default Association: Shift + Left Mouse
Button

Open Pop-up Palette

Figure 2 The Pop-up Palette

The pop-up palette provides quick access to



3

a colour selector, colour history and favourite
presets. It is designed to provide quick access
to an artist’s most often used tools. Since
there is only a single possible mode for this
action, keyboard shortcuts and other meth-
ods of input produce the same behaviour,
which is to toggle the visibility of the palette
at the current mouse position.

Default Association: Right Mouse Button

Pan

Figure 3 The Pan Overlay Widget

The pan action allows you to change the po-
sition of the canvas. The pan action has an
associated widget, which can be seen in Fig-
ure 3, which shows the current position of
the viewport relative to the canvas. It can
be dragged to re-position the viewport. The
pan action has two sets of associated short-
cuts. The first is a single button that, when
held, shows the widget and then allows pan-
ning by dragging the canvas. The second is
a set of four keys to pan in discrete steps.

Default Association: Toggle: Space, Middle
Mouse. Direct: Arrow Keys

Rotate

Figure 4 The Rotate
Overlay Widget

The rotate action allows you to change the
rotation of the canvas. The rotate action has
an associated widget. It can be seen in Fig-
ure 4. The widget shows the current rotation
of the canvas. A click on the widget will reset
the rotation. The rotate action also defines
two sets of shortcuts. The first one is a but-
ton that, when held, shows the widget and
then allows rotation of the canvas by drag-
ging the canvas. The second is a set of three
buttons, one to rotate clockwise by a certain
amount, the other to rotate counterclockwise
and one to reset the rotation.

Default Association: Toggle: Shift + Space,
Shift + Middle Mouse. Direct: Numpad 4
(CCW), Numpad 5 (Reset), Numpad 6 (CW)

Zoom

The zoom action allows you to zoom the can-
vas. Like the Pan and Rotate actions, it also
has an associated widget, which can be seen
in Figure 5. The widget shows a track and a



4

Figure 5 The Zoom
Overlay Widget

handle that indicates the current zoom level.
The handle can be dragged to change the
zoom level. The zoom action defines three
sets of shortcuts. The first one is again a
button. When held it shows the widget and
then allows zooming by dragging the canvas
up or down. The second set are two keys,
one for zooming in and one for zooming out.
Both use fixed steps for the zoom values. The
third set are two keys, one for resetting the
zoom to 100% and the other for zooming the
canvas so it fits the viewport.

Default Association: Toggle: Ctrl + Space,
Ctrl + Middle Mouse. Direct: Numpad -
, Numpad +. Reset: Numpad 1 (100%),
Numpad 0 (Fit to Page)

Other Actions

There are several additional actions related
to the canvas that require research whether
they should be universal actions or whether a
different way of handling would be better.

• Setup Mirror Axis: Changes the axis
used for mirrored painting. It is not of-
ten used and a more direct approach may
work better.

• Modify Assistants: Currently a tool, but
more directly related to the canvas. It
may make sense to combine this with the
Setup Mirror Axis action and create a sin-
gle ‘Modify Assistants’ action.

Changes to Tools

Since some of the tools have now become
universal actions, the tools that are related
to those actions should be removed, as they
only duplicate functionality. The primary tool
to remove is the pan tool, since its function-
ality is now completely covered by the Pan
and Rotate actions. The Zoom tool can also
be removed, however, if there is a desire to
keep the zoom to area functionality, a simpli-
fied version of the zoom tool could be kept
around.

A third tool that can be removed is the the
colour picker tool, once some of the settings
it allows are moved to different locations. It
has been suggested to use a docker for this, it
does seem to be the most accessible location.
The docker should contain a setting for which
layers to use, whether to use the average of
all pixels when doing a drag or simply the last
position and the radius of the sampling area.

Once a good solution has been devised for
assistant editing, the assistant tool can also
be changed to merely create assistants. It
might even be possible to move this to its own
docker as well, though I am unsure whether
this is desirable. Right now creating assis-
tants at least is fairly obvious and simple.



5

Figure 6 Mockup of the Configuration Dialog

Configuration

The configuration of the actions is meant to
be included in the global configuration dialog.
It allows configuration of all the shortcuts re-
lated to the actions described in Proposed
Actions.

A mockup of this dialog can be seen in Fig-
ure 6. It lists each available action, with
its associated shortcuts. The precise sets of
shortcuts available are defined by each action.
Each action allows multiple of these sets of

shortcuts to be added, so it becomes easy to
add alternative sets of shortcuts. Later on, it
may also be interesting to implement profiles
for the shortcuts, primarily to enable different
sets of default shortcuts.



6

Implementation Details

The first step of the implementation will be
to create a class that manages the actions
and the associated shortcuts. It will install
an event filter on the canvas and that way
intercept any input events from the canvas.
It then uses the input events to decide which
action to start. Since the combination of keys
and buttons will most likely trigger several in-
put events, several input events may need to
be combined before a proper decision can be
made on which action to start. However, this
should not cause any noticeable input lag.
The object is also responsible for loading and
saving of shortcut configuration and mapping
it to actions.

Each of the actions is an implementation of a
more generic universal action interface. Each
action needs to provide a list of available
shortcuts, a name that can be displayed in
the configuration dialog and a trigger method
that actually triggers the action. Each action
will have access to both the canvas and the
current tool.

Once these classes are in place, the second
step is to create a configuration page that
can be inserted into the configuration dialog.
This page uses the action manager to list the
available actions and their shortcuts.


