
Making proper support for Universal Plug and
Play in KDE

Armijn Hemel

August 14, 2008



About me

Professional:

I 1996-2006: computer science at Utrecht University

I 2004-2006: MSc thesis: NixOS (http://www.nixos.org/)

I 2000-2008: author Linux Magazine NL, Linux Magazine UK,
NetOpus, . . .

I 2005-present: gpl-violations.org

I 2006-present: board member of NLUUG (http://www.nluug.nl/)

I 2006-present: Chief Random Projects at Loohuis Consulting

http://www.nixos.org/
gpl-violations.org
http://www.nluug.nl/


A word from our sponsors: Loohuis Consulting

I specialized hosting

I web development (AJAX and other buzzwords)

I GPL license compliance

I UPnP security

I router/embedded security advice

More info: http://www.loohuis-consulting.nl/

http://www.loohuis-consulting.nl/


A word from our sponsors: NLUUG

I November 6 2008: conference about “mobility”

I November 6/7 2008: Embedded Linux Conference Europe

I November 8 2008: DLNA plugfest

All in Ede, the Netherlands

More info: http://www.nluug.nl/

http://www.nluug.nl/


Today’s topics and goals

I UPnP history

I UPnP protocol stack

I debunk common misconceptions about UPnP

I UPnP profiles

I how to fit this in KDE/free desktop

My research started with UPnP security testing. A lot of stuff is wrong
and evil things can happen. Let’s not make the same mistakes!

More info: http://www.upnp-hacks.org/

http://www.upnp-hacks.org/


Bringing UPnP to KDE/free desktop

There is definitely interest in having proper UPnP support:

I Amarok GSoC proposal (not accepted)

I bug 136385

A lot of efforts are done ad hoc, instead of in a framework. Not so good,
since:

I duplication of code

I duplication of work

I UPnP seems simple, but there are nasty quirks you need to know
about

Better to have a generic framework in KDE/free desktop:

I handles SOAP quirks of devices (lots!)

I handles eventing

I offers a clean interface to write UPnP control points



NLnet sponsoring

NLnet has promised to sponsor UPnP support in KDE:

I 3 developer sprints

I a few devices

We need to set dates!

Today’s session: brainstorm and trying to get you people thinking about
what the best way to implement things is.



Who should attend?

Anyone working on networked applications that:

I needs to be able to control port forwards

I needs to be able to browse networked media resources

I needs to negotiate WPA2 keys with a router

I needs to display remote user interfaces

Skills needed:

I (some) SOAP

I (some) XML

I TCP/IP

I application specific knowledge

I secure programming ;-)

Prime targets: Amarok, DragonPlayer, Kopete, NetworkManager



Universal Plug and Play - introduction

Bring the desktop “plug and play” concept (Windows 98/Windows ME)
to the (local) network.

Benefits:

I no configuration on the part of the user

I no installation of software, drivers, etcetera

UPnP is not unique:

I JINI (Sun Microsystems)

I IETF ZeroConf (Apple “Bonjour”, KDE, GNOME)



History of UPnP

I early 1999 as reaction by Microsoft to Sun’s JINI

I early 2000: first products with UPnP (Windows ME, Intel’s Open
Source UPnP SDK)

I Windows ME and Windows XP have UPnP support built-in since
their release

I September 2007: ISO standard

UPnP organizations:

I UPnP Forum: create and publish new UPnP standards.

I UPnP Implementers Corporation: UPnP certification and logo
licensing.



UPnP protocol stack

0. addressing

1. discovery

2. description

3. control

4. eventing

5. presentation



UPnP protocol - addressing

Zeroth, optional, step. If no DHCP server is found use “auto-addressing”:

1. randomly pick an IP address from 169.254/16 IP range

2. if IP address is taken, abandon IP address and goto 1

3. else keep IP address

More auto-addressing:

I RFC 3927

I IETF ZeroConf

I Fedora (has a default route for 169.254/16)

169.254/16
169.254/16


UPnP protocol - discovery
First step: discover devices on the network

On boot-up send a HTTP header to UDP port 1900 on
239.255.255.250 (this is called HTTP-U):

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: ssdp:discover
MX: 10
ST: ssdp:all

Other UPnP devices should reply via UDP unicast:

HTTP/1.1 200 OK
CACHE-CONTROL:max-age=1800
EXT:
LOCATION:http://10.0.0.138:80/IGD.xml
SERVER:SpeedTouch 510 4.0.0.9.0 UPnP/1.0 (DG233B00011961)
ST:upnp:rootdevice
USN:uuid:UPnP-SpeedTouch510-1_00::upnp:rootdevice

239.255.255.250


UPnP protocol - discovery (continued)

Periodically send notifications to 239.255.255.250 on port 1900 UDP:

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age=180
Location: http://192.168.1.1:5431/dyndev/uuid:0014-bf09
NT: upnp:rootdevice
NTS: ssdp:alive
SERVER:LINUX/2.4 UPnP/1.0 BRCM400/1.0
USN: uuid:0014-bf09::upnp:rootdevice

239.255.255.250


UPnP protocol - description
Second step: find out what devices can do

LOCATION points to XML:

Location: http://192.168.1.1:5431/dyndev/uuid:0014-bf09

This file describes (per “profile”):

I control URL

I events URL

I SCPD URL (description of which functions are available, in XML)

<service>
<serviceType>urn:schemas-upnp-org:service:

WANIPConnection:1</serviceType>
<serviceId>urn:upnp-org:serviceId:WANIPConnection</serviceId>
<controlURL>/ipc</controlURL>
<eventSubURL>/ipc</eventSubURL>
<SCPDURL>/ipc.xml</SCPDURL>
</service>



UPnP protocol - control

Third step: controlling a device

Devices can be controlled by sending SOAP requests to the “control
URL”.

There is no authentication/authorization in UPnP, being on the LAN is
enough to do this.

No administrative privileges needed: any user can do this.



UPnP protocol - eventing

Fourth step: keeping devices informed

Changes in “state variables” are sent over the network to subscribed
clients.

Clients can subscribe to events, if they provide one or more callback
URLs.



UPnP protocol - presentation

Fifth step: human interface

Presentation is the human controllable interface: the webinterface of the
device.



UPnP profiles

UPnP defines profiles: a set of actions, state variables and other profiles
that implement specific functionality.

Standardized profiles:

I Internet Gateway Device (IGD)

I MediaServer and MediaRenderer (A/V)

I HVAC

I and more

Most popular: Internet Gateway Device and (recently) MediaServer and
MediaRenderer.

For many people IGD is UPnP. This is not true. For others MediaServer
and MediaRenderer is UPnP. This is not true either.



Things that need to be done

I device discovery

I passing device state to programs that are interested (new devices
joining, devices leaving, etcetera)

I creating a good interface that programs can use to send SOAP
requests

I creating a service that can be used to process event callbacks
(HTTP server) and send them to interested programs

I application support



Example: Internet Gateway Device profile

The Internet Gateway Device (IGD) is an interesting first target:

I There are millions of routers that implement the UPnP IGD (most
widespread use)

I Used actively by a lot of applications and other devices.

The Internet Gateway Device profile allows port forwarding.

Network Address Translation (NAT) does not easily work with predefined
ports.

Workaround: programs dynamically agree on ports. Firewalls need to be
dynamically adapted for this to work.

I MSN/Windows Live Messenger (“webcam”, file transfers)

I remote assistance (Windows XP)

I X-Box

I many bittorrent clients



Internet Gateway Device and KDE

Applications in KDE that would use this profile:

I Kopete (portmappings for webcam and file transfers in MSN)

I KTorrent (open extra ports)

I NetworkManager (statistics, connection control)



MediaServer

MediaServer:

I stores media files

I lets applications browse and search files

I optionally streams

Applications in KDE that invoke actions on devices with this profile:

I Amarok

I DragonPlayer

I digiKam

I Dolphin (?)



DLNA

“Digital Living Network Alliance” is an industry consortium.

Core technologies of DLNA:

I UPnP

(amongst others)

Lots of devices are “DLNA certified”.

What does it mean? I don’t know.

Can we be certified? Unlikely, since DRM is involved.

Would still be fun to test with certified devices (hey Nokia, the N95 8GB
is DLNA certified!)



Wi-Fi Protected Setup

New standard: Wi-Fi Protected Setup

UPnP is used for exchanging WPA2 keys over a wired connection. All
new home routers you can buy at a shop will get support for this!

In Windows Vista this is called “Windows Connect Now”, part of
“Windows Rally”.

http://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup
http://en.wikipedia.org/wiki/Windows_Rally

Applications in KDE that invoke actions on devices with this profile:

I NetworkManager

http://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup
http://en.wikipedia.org/wiki/Windows_Rally


Other profiles

Other profiles (not used a lot, but devices exist)

I RemoteUIClient (NETGEAR EVA8000)

I WLAN Access Point

I Digital Security Camera

I Scanner



Let’s get to work! (soon)

I have:

I UPnP devices (quite a few routers, some mediaservers, some others).

I lots of knowledge about how particular stacks (mis)behave

You have:

I application knowledge

I a platform to leverage a lot of work

I the opportunity to make the best UPnP enabled desktop

Deal?


	Universal Plug and Play overview
	Protocol workings

