<table><tr><td style="">yurchor added a comment.
</td><a style="text-decoration: none; padding: 4px 8px; margin: 0 8px 8px; float: right; color: #464C5C; font-weight: bold; border-radius: 3px; background-color: #F7F7F9; background-image: linear-gradient(to bottom,#fff,#f1f0f1); display: inline-block; border: 1px solid rgba(71,87,120,.2);" href="https://phabricator.kde.org/D24972">View Revision</a></tr></table><br /><div><div><p>Just some considerations:</p>
<ol class="remarkup-list">
<li class="remarkup-list-item">dx ~ (x_max-x_min)/viewport_width (about 0.001 for relatively low values of x).</li>
<li class="remarkup-list-item">Error for Simpson's rule (Runge-Kutta method degrades to this rule in case of y'(x)=f(x) integration) is f^(4)(\xi)*dx^5/2880.</li>
<li class="remarkup-list-item">To have cumulative error less than 1 for a viewport width 1000 it is enough to satisfy f^(4)(\xi)*dx^5/2880 < 0.001.</li>
<li class="remarkup-list-item">If f^(4)(x) is of dy/dx^4 order so it is enough to multiply it with dx^2 to approximately satisfy 3. under the above-mentioned conditions.</li>
</ol></div></div><br /><div><strong>REPOSITORY</strong><div><div>R334 KmPlot</div></div></div><br /><div><strong>REVISION DETAIL</strong><div><a href="https://phabricator.kde.org/D24972">https://phabricator.kde.org/D24972</a></div></div><br /><div><strong>To: </strong>yurchor, KDE Edu<br /><strong>Cc: </strong>aacid, cfeck, kde-edu, narvaez, apol<br /></div>