<table><tr><td style="">jjazeix added a comment.
</td><a style="text-decoration: none; padding: 4px 8px; margin: 0 8px 8px; float: right; color: #464C5C; font-weight: bold; border-radius: 3px; background-color: #F7F7F9; background-image: linear-gradient(to bottom,#fff,#f1f0f1); display: inline-block; border: 1px solid rgba(71,87,120,.2);" href="https://phabricator.kde.org/D16492">View Revision</a></tr></table><br /><div><div><p>the aim was to have something easier, this algo seems more difficult to understand.<br />
Maybe I'm wrong, but for me, you can win as long as there is (n +/- m) % something else (depending on how much balls you can remove min/max and total balls number).<br />
Basically, on easier mode: 1-4 balls to remove and 15 total balls number.<br />
As long as there is 11, then 6 balls to find, you win. So there is a way to generalize this formula to find if you can win or not.</p></div></div><br /><div><strong>REPOSITORY</strong><div><div>R2 GCompris</div></div></div><br /><div><strong>REVISION DETAIL</strong><div><a href="https://phabricator.kde.org/D16492">https://phabricator.kde.org/D16492</a></div></div><br /><div><strong>To: </strong>AkshayCHD, GCompris: Improvements<br /><strong>Cc: </strong>jjazeix, kde-edu, GCompris: Improvements, harrymecwan, ganeshredcobra, nityanandkumar, echarruau, rahulyadav, narvaez, scagarwal, apol, timotheegiet, hkaelberer, bcoudoin<br /></div>