
Setting up a KDE Testing and Quality Software Team

I Introduction
In the past there were a few attempts to set up a Quality Team in KDE but they were not successful. 
Below I propose a few steps to start putting in place some infrastructure in order to better test our 
software. The idea is to start with the next 4.9 release and then pursue this for the port to Qt5 and 
the next KDE SC release.
The proposed actions target reinforcing (which means remain developers about them mostly) 
already existing infrastructures (such as unit tests, code check, review process for new inclusions) 
and setting new actions such as a more structured beta testing and a few areas for functional testing.

II Proposed testing methods for KDE SC 4.9
Goal : reinforce existing test infrastructure and setup new infrastructures. Follow the Release 
Schedule. Work with developers who want to be part of it, with the Bug Squad and with packagers 
and distribution people. Gather a team of enthusiast testers.

Reinforce : Code check: style, naming, …

(easy to improve)(each sub KDE project should indicate clearly which style they wish to follow)

– done by developers during the design of the software

– follow http://wiki.qt-project.org/API_Design_Principles 

– can be JJ to fix indentation, variables and classes names 

– use existing tools such as Krazy

Reinforce : Unit tests

(easy to improve)

– done by developers during the design of the software

– ensure that any lib outside kdelibs has tests (reinforce developers awareness of making the 
tests)

– reinforce awareness for developers to run the tests on a variety of platforms 

Reinforce: review process

(easy to improve, done mainly by developers but testers can join to

Every new component coming into KDE SC should be in the review stage and its authors should 
send a mail to kde-core-devel, i18n, doc team, release team and relevant mailing list the program 
will join as well as a summary of the new app/lib plus the git/svn repository for reviewing. A 
commitment to maintain the code should be explicit in the mail asking for inclusion.

– check coding style

– check i18n (done by Albert Astal Cid)

– check relevant doc (handbook, userbase and techbase pages)

– test app behavior

http://wiki.qt-project.org/API_Design_Principles


See http://lists.kde.org/?l=kde-core-devel&m=121752904404479 for ideas that were suggested to 
implement better review.

 NEW: Put in place structured beta-testing

Timeline: starts at the first beta release until the final 4.9.0 release (May 24th 2012 to August 1st 

2012)
http://techbase.kde.org/Schedules/KDE4/4.9_Release_Schedule
The beta testers install the software and use it as they wish, with the 
understanding that they will report any errors revealed during usage back to 
the development organization. The beta-tester installs the beta software and uses it as he 
wishes. Collaboration with distributions which make beta packages available. Goal: that the 
software does what the user expects it to do.

The testers will report any bug and error revealed during usage using KDE bugzilla.

NEW: Put in place in a few selected areas functional testing

(black box testing also known as functional software testing, easy to implement)

A few areas (apps or whole “module”) are defined with the involvement of the developers. Testers 
apply to test one piece of software (a plasmoid, an app, a kcm,..)
Check every UI element and see if it acts as you expect it to. Bug can be that the UI element does 
not do what it should (Quit does not quit for example) or you don't understand the purpose of the 
element, etc

III Methodology

A wiki page will list software and their beta-testers. Developers should be very responsive to fixing, 
assessing the errors found during the beta tests and should register their software prior to the test on 
the wiki page. The beta testers will apply there and agree to send prompt feedback about their test.
Beta testers can be new users of the product, users of similar products from the competition or 
experienced users of prior versions. Ideally all platforms should be tested on. They should get a 
quick course on how to report bugs (steps to reproduce the bug in particular). This should be 
available before calling for beta-testers. 
Beta-tests are conducted over a short period of time (during the beta releases).
Pro: identification of unexpected errors
Cons: not a thorough test as beta-testers only test what they use. Errors are sometimes reported 
without much details.
Focus will be on: 

– incorrect or missing functionality
– interface errors
– errors in data structure used by interfaces
– behavior or performance errors
– initialization and termination errors

People doing those beta-tests will have the official status of “KDE 4.9 Beta-testers” which identify 
them as active contributors within the community. They are a bridge between the future users and 
developers.
Incentive for beta-testers sending the most valuable feedback?
Distributions will play a major role in these beta tests: define how to work with them and ensure 
having people from every distribution willing to help.

http://techbase.kde.org/Schedules/KDE4/4.9_Release_Schedule
http://lists.kde.org/?l=kde-core-devel&m=121752904404479


Specialized areas that some testers can focus on: i18n (bad layouts, wrong strings, missing 
context,...), RTL languages widgets behavior, usability, HIG rules

Follow-up to this work is to intensify bug triaging and confirm reports from beta-testers by the 
KDE bug squad. 

Set up a few week-ends to test and triage and tackle bugs through IRC

IV TODO
– setup a dedicated mailing list: kde-testing (DONE: 

https://mail.kde.org/mailman/listinfo/kde-testing)

– set up a wiki page with a quick “HOWTO report bugs efficiently” (especially steps to 
reproduce).

– set up a wiki page with links to distributions repositories for KDE 4.9 Betas – add a HowTo 
build from tarballs link

– set up a wiki page with the goals of Beta testing
– set up a wiki page with programs whom developers are willing to get involved for Beta-

Testers to register
– set some dates for IRC meetings
– write a Dot story explaining the process
– alert all social networks and relevant websites (blogs on PlanetKDE) to spread the news and 

get lots of testers
 

V Proposed goals for the next releases
– more automated tests (KDE Telepathy and Nepomuk have some)

– GUI automated testing (investigate software)

– extend areas to test with functional tests

https://mail.kde.org/mailman/listinfo/kde-testing

	I Introduction
	II Proposed testing methods for KDE SC 4.9
	Reinforce : Code check: style, naming, …
	Reinforce : Unit tests
	Reinforce: review process
	NEW: Put in place structured beta-testing
	NEW: Put in place in a few selected areas functional testing

	III Methodology
	IV TODO
	V Proposed goals for the next releases

