NX Client Developer's Guide 03/14/2005

NX Client Developer's Guide
version 1.0
updated 03/20/2005

NX Client Developer's Guide 03/14/2005
Table of Contents

Overview of NX technology..........coovvivrnniisne e 3
NXCompsh and NXDIIVET.......ccccccecrrirercereerc e ereesserse s e s eneeseesne s 4
NXRUN. ettt n e se e e san e e srn e e s e e e nennnnnns 5
NXRUN OVEIVIEW.......oicierieieeeiree e s ssee s s ne e s s 5
Custom Configuration Attributes.........cccccocerereerceeerseree s 6
Getting Feedback..........coeiirerieneneece s 6
[T T [Vo RS 7
I D 1= TSRS 7
NXDIIVEr OVEIVIEW.....ccceereeereeeeeineesssesseeessees s see s sse e s ssssnesnseesas 7
Getting Feedback.........covvrrvreere et 8
Logging in NXDriver/NXCompsh..........cccovvriennnnnnneneesessenene 9
1Y (074 o b SRR RRRRR 10
MOZNX OVEIVIEW.......oiiiereiireerneereneesses e e s e 10
INStAllation........cc.coeeee e e 11
1 12
The NXCompsh/NXDriver Implementation.............cccceevveeeveereeseecene. 12
Appendix A - Installing the NX Client Tools.......ccccceeerveriecveneeeceeeee. 13
Appendix B - Building The Client TOOIS......ccccccceeeriemercereene e eveeene 13
Appendix C - The Protocol - Sample Session.........cccccvevrvercecccerennee. 14
Appendix D - The Protocol - Referencecccooeeoeeeeeieeeeceveeceeren 18

NX Client Developer's Guide 03/14/2005

Introduction

This guide will provide all the documentation necessary to develop NX client
applications. Specifically, the guide will cover:

An overview of the NX technology and history of the open source clients
How to integrate NX into your applications using the nxrun client

How to use the nxdriver c++ library to create custom clients

A guide to using moznx to create browser-based applications

An overview of all the components in the nxcompsh/nxrun libraries
Detailed build instructions for each platform

Overview of NX technology

Before digging into how to develop applications using the NX client tools, it is
important to understand what NX is and what the related products are. The
best documentation can be found at nomachine.com, so this overview will be
brief.

The core NX technology is a set of custom libraries that compress X-Windows
sessions and make them perform well over slow connections. These libraries
are used in the NX applications, which behave like Citrix or VNC. However,
how they work is a little different.

Normally in X-Windows applications, there is a server on the end user's
machine and a client that the user wants to run. The client can be on the user's
machine or on another machine. When the user invokes the client application,
it runs on its machine, but it sends all the ui messages to the server which
provides the screen, pointer, and keyboard interfaces to the user. With
applications like Citrix and VNC, these messages are trapped some way and
converted to a different protocol and sent to a custom client to render for the
user.

With NX technology, NX components are inserted between the server and the
client. There is one component at each end. While the server and client think
they are talking directly to each other, they are really talking through the NX

NX Client Developer's Guide 03/14/2005
libraries. These libraries optimize the X-Windows messages using caching,
compression, and nesting so the traffic between the two is lighter and faster.
Unlike other technologies, NX doesn't translate the messages to a proprietary
protocol. It uses the native X protocol and is transparent to the X server. This
is why the NX components are referred to as proxies. A web proxy works in a
similar fashion - the web servers and browsers talk the same way, but the proxy
adds additional caching and security by stepping into the middle of the
connection.

This core proxy technology is released by Nomachine as open source libraries.
The components have names like nxagent, nxcomp, and nxproxy. These
libraries are supported by utility applications like nxssh and nxwin. See the
documentation on nomachine.com for more details about these components.

So, how does a user tell its X environment to run an application through the
proxies instead of normally? Well, it could be done manually through a series of
steps on the user's client machine and the server node. But Nomachine
developed NX client and NX server to make it easier.

The nxclient calls the nxserver. It authenticates and requests a session. The
nxserver launches an instance of the proxy agent on the server and tells the
nxclient how to access it. The nxclient then starts an instance of the proxy on
the client machine. The two proxies talk to each other and the session is
established. Then the desired application is launched by nxserver and run
through the proxies. This communication protocol has been reverse engineered
with a lot of help from nomachine. While some open source clients invoke the
proxies manually, most use this protocol to talk to a commercial server, or to the
freenx server.

NXCompsh and NXDriver

Because the nxserver protocol is complicated and changes over time, it is better
that the open source community use a common implementation of the protocol
in their applications. This implementation is nxcompsh and nxdriver. They were
originally released under GPL by nomachine as part of 1.3. The client
consisted of a low level communication library called nxcompsh and a
command line client called nxrun. The client was going to be used as the core

NX Client Developer's Guide 03/14/2005

of the Nomachine 2.0 NX Client. But it was buggy to start with and was never
maintained. | picked it up and started working with it because | wanted to create
a browser plug-in client and | really didn't want to figure out how the protocol
really worked. | tore out the command line interface and turned it into a high-
level API called NXDriver. | also updated all the code to support the 1.4.0
servers and fixed some bugs. So what happened to NXRun? Well, using
NXDriver it was trivial to implement a command line interface. So nxrun has
been recreated and it represents the easiest way for developers to create nx-
enabled applications.

NXRun

NXRun Overview

NXRun is designed to be either a standalone client or to be embedded in scripts
or applications. Because it is just a wrapper around nxdriver, nxrun is a great
way to understand the functionality of the library. All of the functionality
described in this section is also available through nxdriver.

NXRun takes as input a valid nx client configuration file and some command
line parameters.

The easiest way to use nxrun is to start with a configuration file created by the
nomachine client.

now you can invoke nxrun from the command line:
./nxrun test.conf -p onion

nxrun does not support the way passwords are saved in the nx client
configuration file, so you have to use the -p parameter to define your password.

There are other parameter as well. The table below lists them all.

-u : prompt for user

NX Client Developer's Guide 03/14/2005
-p: prompt for password
-i: interactive. Prompt for user or password if they are not set
-q : quiet. Do not display messages on console
- enable logging. See details below

Custom Configuration Attributes

In addition to the standard configuration file, nxrun also supports a few custom
configuration items. These are listed below:

Group: Login

Password - Password in md5 format

ClearPassword - Password in clear text

KeyFile - path to an ssh keyfile (overrides default of
NXDIR/share/client.id_dsa.key)

Getting Feedback

NXRun provides feedback on its processing over STDOUT and STDERR. The
format and content is outlined below;

STDOUT

I> <message>. An informational messgae

S> <session id>. The session id assigned to the session

C> Complete. NX client initiated successfully.

STDERR

E> <message>. An error occurred. This is the exception message.

In the case of an error, you get an informational message saying there is an
error on STDOUT and the detailed error message on STDERR.

You can suppress these messages by using the -q parameter.

NX Client Developer's Guide 03/14/2005
Logging

There is a logging facility in nxrun. You enable it from the command line by
using the -l flag. For example, you can log errors to a file with the following:

./nxrun test.conf -| fe

There are two modes for logging. One is logging to the console ('c'). This logs
info and debug messages to STDOUT and errors to STDERR. The other is
logging to a file (). This option will log all messages to a file called
nxcompsh.log in the current directory.

There are three types of messages to be logged. They are info, debug, and
errors (', 'd', and 'e' respectively). You decide which ones to log by setting the
appropriate flags. to log all three, just do:

/nxrun test.conf -l ide

NXDriver

NXDriver Overview

Once you understand how NXRun works, you will find it very easy to use
nxdriver. We invoked nxrun from the command line using the following:

./nxrun test.conf -p onion

To do the same from a c++ progam using nxdriver, we do the following:
#include "NXDriver.h"

NXDriver dr;

dr.SetConfigFile("test.conf");

dr.SetClearPassword("onion");
dr.Run();

NX Client Developer's Guide 03/14/2005

Simple! How about the other options we used? They are all in NXDriver as
well. The table below shos the equivalent methods for each of the command
line parameters:

Getting Feedback

While NXDriver is easy to invoke, you are probably also going to want to keep
track of what it is doing so you can provide feedback to your users, handle
errors, etc. There are two ways of doing this with NXDriver.

The Callback Interface

NXDriver has a very simple callback interface that can be implemented by any
c++ class. It has a single method that is invoked whenever nxdriver has
information to share.

The method is Callback(int message, void *ptr);
The message types that are supported are in CallbackMessageTypes.h.
The messages are defined below:

CB_MSG_STATUS. Informational message. ptris a const char * to the

informational message.

CB_MSG_SESSION. Once a session id has been assigned by the

server this message is sent. ptris a const char * to the session id. The

session id is in the form hostname-display-unique id
CB_MSG_COMPLETE - This message is sent when NXDriver completes
successfully. ptris null.

CB_MSG_ERROR - This message is sent when an error occurs. ptris

a const char * to the error message.

For a simple example of a class implementing the callback interface, see
ConsoleCallback in nxrun.

NX Client Developer's Guide 03/14/2005
Deriving NXDriver

The second way to get feedback to your application from NXDriver is to derive
your application from it. There are two methods that can be used to get
messages and errors from NXDriver. They are:

void NXDriver::SetConnectionMessage(string message)
void NXDriver::SetConnectionError(string error)

Logging in NXDriver/NXCompsh

NXDriver and NXCompsh share a logging interface. Itis nxcompsh/Logger.h.

The logging options are the same as those presented in nxrun. There are a set
of macros you can use to log events.

The macros serve two purposes. One is to keep the logging interface simple.
The other is to allow you to compile with or without logging.

To enable logging, you need to define NX_ENABLE_LOGGING in your compile.
Then you can use the commands below:

NX_LOG_SETFLAGS(flags) - set the logging level. Flags is a string
containing some combination of c,fi,d, and e. See the description under
nxrun for more details

NX_LOG_LOGINFO(message) - Log an informational message
NX_LOG_LOGDEBUG(message) - log a debug message
NX_LOG_LOGERROR(message) - log an error message

Tips for using the Logger.h macros:

If your debug logic is complicated and you don't want it compiled in
unless debug is on, then use the NX_ENABLE_LOGGING macro. For
example:

NX Client Developer's Guide 03/14/2005
#ifndef NX_ENABLE_LOGGING
stringstream ss;
ss << "log this: " << foo() << "from " << bar();
NX_LOG_LOGDEBUG(sSs.str);
#endif

If you do compile with logging enabled, remember that these macros
can be compiled out. For example, the following code would be bad:

int i=0;
while (i < 10)
NX_LOG_LOGDEBUG("element:" + e[i++]);

Not only would the while statement have no body when the macro is
compiled out, but i will never be incremented.

Moznx

Moznx Overview

You can use moznx to embed nx services in a browser application. This is
great for creating a portal to allow acces to servers or applications. Also/
browser clients can be more lightweight and cross-platform.

Moznx is a mozilla plugin. That means it will work with Mozilla or Firefox
browsers. It is native code, so it must be installed for your particular platform.
Currently, moznx is available for Windows and Linux.

To embed moznx in a web page, you use the embed tag in html. The src
attribute will point to the nx configuration file. This can be a local file, a static file
on your web server, or a file generated dynamically from a database or
directory.

Getting feedback from moznx

10

NX Client Developer's Guide 03/14/2005

Moznx prints messages to the plugin window, but your application may want
feedback as well. There is a browser callback mechanism in moznx. Itis
intended to provide callbacks to a web server but could be adapted to client-
side callbacks as well.

To use the callbacks, you need to set the postback_target attribute. This
attribute will point to the frame you want the callback messages sent to. | use a
hidden iFrame on my page. Then you need to set the postback_session
attribute. This tells moznx what url to call (with a get request) when an event
occurs. The events are either that a session was successfully established or
that an error occurred. It also gets called when the session id is assigned.

Because moznx is based on NXDriver, it has the same features as nxrun. A list
of the custom attributes for moznx is below:

postback_session -If you provide this parameter, this url will be called

with a GET to give you feedback on your session. The data is

appended to your url. There are 3 scenarios where this is called:

op=postsessionid&session_id={the session id}. Once a session id is
established it will be sent to your url

op=postconnected. The url will be called when the negotiation is
completed successfully.

postback_target - This is the name of the frame to send the callback

message to.

restore_session_id - If this session id is set/ moznx will restore that

session instead of starting a new one

session_name - The name to give to the session. Important. The

nomachine server will use the session name to determine if you are

requesting a suspended session and will restore a matching session

even if you do not explicitly request it.

log_flags - if you want to enable logging, you can set the logging flags

(c,fi,d,e).

Installation

The mozilla plugin can be installed using the xpi installer for mozilla. This
technology uses a simple script to install the plugin on the client machine. The

11

NX Client Developer's Guide 03/14/2005
xpi files | have created include both the plugin and the latest version of the
nomachine executables. The windows install alslo includes the pthread dll.
Please note that on the Windows platform, the moznx install may overwrite
some of your programs if you have the nomachine client installed.

Paths

Moznx needs to define paths for three components. One is the plugin directory
for the browser. The second is the location of the core X binaries. The third is
the location of the temp and session files.

On both platforms, it is possible to control where the binaries are stored. First, it
will look for the environment variable NXDIR. If this is not set, it will use the
default location for each platform. On Linux, it goes one step further. If the
binaries are not int the default location, it will look to where moznx installs the
binaries. This is to make it easier to package moznx to share binaries with
other clients.

On Windows, moznx installs the plugin to the mozilla plugin directory. Itinstalls
the core nx components to c:\Program Files\NX Client for Windows\, which is
the default location for the commercial client. Currently, the temp files are
stored in c:\.nx.

On Linux, it is more likely that end users will be set up properly, meaning that
they will not be allowed to install shared programs. The default moznx install
takes this into account. The plugin is installed to the user's browser plugin
directory (for example ~/.mozilla/plugins). The core nx components are stored
in ~/.nx. This is different then the standard location of /usr/NX. The temporary
and session files are stored in the default location of ~/.nx/.

Changing the install package is very straightforward. The xpi archive is just a
zip file and can be unzipped with any standard zip utility. The install.js file in the

root of the archive is a standard javascript file with the install commands in it.
For more information see the xpi project on mozilla.org.

The NXCompsh/NXDriver Implementation

12

NX Client Developer's Guide 03/14/2005
To be added

Appendix A - Installing the NX Client Tools

To be added

Appendix B - Building The Client Tools

Linux
nxrun
Download the client from cvs
For each directory do the following:
.Jconfigure
make
Build in the following order:
nxcompsh
nxdriver
nxrun
moznx
Download the samonkey source from mozilla
configure and build all of mozilla
download the client from cvs into the following directory
mozilla/modules/plugin/tools/sdk/samples/
For each directory do the following:
.Jconfigure
make
Build in the following order
nxcompsh
nxdriver
moznx
Windows
Windows is a little more complicated
You must use Microsoft Visual C++ 6.0
Download the gecko sdk from the mozilla site
download the client from cvs into the samples directory
download expat into the nxc directory
download pthreads for win32 into the nxc directory

13

NX Client Developer's Guide 03/14/2005
open the nxc workspace and build

Appendix C - The Protocol - Sample Session

1. Connect to the server using nxssh

nxssh -nx -i Jusr/NX/share/client.id_dsa.key nx@<host address>

If you are using encrypted session:

nxssh -nx -i Jusr/NX/share/client.id_dsa.key nx@<host address> -B

for Windows client, you have to include the -v switch for encrypted sessions to
work.

nxssh -nx -i Jusr/NX/share/client.id_dsa.key nx@<host address> -v -B
You will get the following response:

NX> 203 NXSSH running with pid <some pid>

NX> 285 Enabling check on switch command

NX> 200 Connected to address: <address> on port: <port>
NX> 202 Authenticating user: nx

NX> 208 Using auth method: publickey

HELLO NXSERVER - Version 1.4.0-02 OS_(GPL)

NX> 105

3. NX> 105 is kind of like a shell prompt. Now you respond with the client
version

type: hello NXCLIENT - Version 1.4.0
You will get the following response:

NX> 105 hello NXCLIENT - Version 1.4.0
NX> 134 Accepted protocol: 1.4.0

14

NX Client Developer's Guide

03/14/2005

NX> 105

4. | think the production client then sends the following:

SET SHELL_MODE SHELL
response:

NX> 105 SET SHELL_MODE SHELL
NX> 105

SET AUTH_MODE PASSWORD
NX> 105 SET AUTH_MODE PASSWORD
NX> 105

5. Then you send the login command
type: login

response:

NX> 105 login

NX> 101 User:

type: <username>

repsonse:

NX> 102 Password:

type: <your password>

If you type <enter> instead, you will get the following from the commercial

server (but not freenx)
NX> 109 MD5 Password:

type: <md5 of usernamepassword>

You can get this password value by using the nxpassgen utility | have for moznx

15

NX Client Developer's Guide 03/14/2005
response:

NX> 103 Welcome to: <host> user: <username>

NX> 105

6. Now you can request a session

type: startsession --session="<session>" --type="unix-kde" --
cache="8M" --images="32M" --
cookie="6726ad07a80d73c69a74c5f341b52a68" --link="adsl" --
render="1" --encryption="0" --backingstore="when_requested" --
imagecompressionmethod="2" --geometry="1024x768+188+118" --
keyboard="defkeymap" --kbtype="pc102/defkeymap" --media="0" --
agent_server="" --agent_user="" --agent_password="" --
screeninfo="1024x768x16+render"

For encrypted session, send --encryption="1"

note: | have always had trouble getting this to work and have to use '&' as a

delimeter instead of ' --'. It seems this issue is solved if you SET SHELL_MODE

and SET AUTH_MODE as described above. | have not confirmed yet.
response:

NX> 105 startsession --session="<session>" --type="unix-kde" --
cache="8M" --images="32M" --
cookie="6726ad07a80d73c69a74c5f341b52a68" --link="adsl" --
render="1" --encryption="0" --backingstore="when_requested" --
imagecompressionmethod="2" --geometry="1024x768+188+118" --
keyboard="defkeymap" --kbtype="pc102/defkeymap" --media="0" --
agent_server="" --agent_user="" --agent_password="" --
screeninfo="1024x768x16+render"

you can also just type startsession<enter> then the response will be

NX> 106 Parameters:

Then you type all the parameters

You can replace startsession with restoresession if you want to restore an

16

NX Client Developer's Guide 03/14/2005
existing session. You add the additional attribute --id="<session id you want to
restore>".

A good explanation of restoring sessions is here:
http://www.nomachine.com/developers/archives/nxdevelopers/0323.php

7. Now the server sends back all of its parameters followed by a 105

NX> 700 Session id: <hostname>-1058-
CA3511103B37ADB2ABDAAF3EBS510E99D

NX> 705 Session display: 1058

NX> 703 Session type: unix-kde

NX> 701 Proxy cookie: A4ABFD3EAE09B28A0EB0399A3EFD26392
NX> 702 Proxy IP: 127.0.0.1

NX> 706 Agent cookie: 6fff2cd4222776acd605d42fbb4bdfb5
NX> 704 Session cache: unix-kde

NX> 707 SSL tunneling: 0

NX> 710 Session status: running

NX> 105

For encrypted sessions, NX> 707 SSL tunneling: 1

8. Now in another session invoke nxproxy with the proper parameters on the
command line and in the options file.

nxproxy -S options=<path to options file>/options:<Session display>

for example above: nxproxy -S options=/.nx/S-hostname-1058-
CA3511103B37ADB2ABDAAF3EB510E99D/options:1058

Then, in the options file:
nx,session=<sesname>,cookie=A4BFD3EAEQ9B28A0EB0399A3EFD26392,ro
ot=/.nx,id=hostname-1058-

CA3511103B37ADB2ABDAAF3EB510E99D,listen=33057:1058

listen=<port:display> is only needed for encrypted sessions. Also, all these
parameters can be sent on the command line instead of the options file.

17

NX Client Developer's Guide 03/14/2005

For the listen=<port:display>, | always just hardcode a port number. | am not
sure where the commercial client gets the port number. | have asked but not
gotten a response.

If the session is not encrypted, you say connect=<address:port> instead.
Address is the address of the NX Server. Port is the proxy port.

9. Now back to our NXSSH session.

type ‘bye’

Response:

999> Bye

10. For encrypted sessions, now enter the switch command

type: NX> 299 Switching connection to 127.0.0.1:33507 cookie:
A4BFD3EAEQ09B28A0EB0399A3EFD26392

Appendix D - The Protocol - Reference

This section is in csv format.

Server responses,,

,HELLO NXSERVER - Version 1.4.0-02 OS_(GPL) ,Hello from server. Comes
after ssh authentication. Includes server version number

100,NXSERVER - Version <version> <license>,version

101,user:,enter the nx user name. (response to login comand)
102,password:,enter the nx password in plain text (response to login command)
103,Welcome to: <host> user: <username>,welcome indicates nx user and
password have been accepted

105,,This is kind of like a shell prompt. It means the server is expecting a
command from the client. It may also be sent to echo a command back to the
client

106,parameters:,parameters for the session (response to startsession or

18

NX Client Developer's Guide 03/14/2005
restoresession command)

109,MD5 password,enter the nx password in md5 <usernamepassword).
Commercial only

110,NX Server is <status>,status (running|stopped)

113,Changing password of user <user>,change password

114,Password of user <user> changed,password changed

122,Service started,nxserver started

123,Service stopped,nxserver stopped

127,Available sessions: lists out all the sessions meeting the parameters.
Response to listsession command from the client

134,Accepted protocol: 1.4.0,Indicate that the client protocol has been matched
and accepted (response to hello command from client)

148,Server capacity: not reached for user: <user>,Info - server capacity was
checked and has not been reached

200,Connected to address: <address> on port: <port>,nxssh connected
202,Authenticating user: nx,authenticating the ssh user

203,NXSSH running with pid <some pid>,Info - process id of nxssh session
208,208 Using auth method: <method>,Info - auth method for ssh session
285,Enabling check on switch command,Info - used for informational messages
related to encryption/switch

404,ERROR: wrong password or login,response to login command with invalid
credentials

500,ERROR: <error>,Server encountered an error

537,ERROR: passwords do not match,Password does not match confirm
password on password change

700,Session id: <hostname>-<display>-<id>,Session id assigned by the server
701,Proxy cookie: <cookie>,Cookie assigned to the proxy by the server. Used
to authenticate to the proxy

702,Proxy IP: <ip>,IP Address used to communicate to the client proxy
703,Session Type: <type>,Session type requested by the client

704,Session cache: <cache>,

705,Session display: <display>,"On the server, every nx instance is associated
with a display”

706,Agent Cookie: <cookie>,Session cookie suggested by the client

707,SSL tunneling: (0]1),Flag whether to tunnel all traffic through ssh. Based
on encryption parameter sent by the client,

710,Session status: <status>,good status is 'running’,

999,Bye,end interactive session,

1002,Commit,,

19

NX Client Developer's Guide 03/14/2005
1006,Session status: running,,

Client commands,,,

,hello NXCLIENT - Version 1.4.0,hello. Include the client version,NX> 105 hello
NXClient - Version 1.4.0\nNX> 134 Accepted Protocol 1.4.0

,SET SHELL_MODE SHELL,set the shell mode (for backward
compatibility),NX> 105 SET SHELL_MODE SHELL

SET AUTH_MODE PASSWORD,,NX> 105 SET AUTH_MODE PASSWORD
Jlogin,request nx login,NX> 105 login\nNX> 101 user:

,startsession,request to start a new session,if parameters are not included: NX>
106 parameters:. Otherwise NX> 105 startsession ? followed by server
reporting its parameters (700 series)

,Jrestoresession,request to restore an existing session,if parameters are not
included: NX> 106 parameters:. Otherwise NX> 105 restoresession ? followed
by server reporting its parameters (700 series).

,bye,Ends the interactive session,999> Bye

,'listsession --user=""<nx user>"" --status=""suspended,running"" --
geometry=""<geometry>"" --type=""<session type>"" " List the sessions that
meet the criteria. Used to identify sessions to restore, NX> 127 Available
sessions?

,NX> 299 Switching connection to <proxy ip>:<proxy display> cookie: <proxy
cookie>,switch command for encrypted sessions. This tells the nxssh client to
forward stdin & stdout to the nxproxy instance,

session parameters,,

,session,session name. Derived from conf file name in the commercial client.
type,"unix-kde, unix-gnome, unix-application, windows, vnc. If unix-application,
then application is required"

,cache,

,images,

,cookie,unique cookie for the session

Jink,"modem, adsl, etc. Tells the bandwidth. It makes some decisions about
compression and quality based on this"

,render,use rendering extension (?)

,encryption,0 means do not tunnel all traffic over ssh. 1 means do.
,backingstore,

,imagecompressionmethod,

,geometry,screen resolution

,keyboard,keyboard mappings. Default is defkeymap

20

NX Client Developer's Guide 03/14/2005
,kbtype,keyboard type. Default is pc102/defkeymap

,media,forward sound (0|1)

,samba,map samba shares (0|1)

,agent_server,"vnc or rdp server, if applicable”

,agent_user,"rdp user, if applicable"

,agent_password,vnc or rdp password if applicable

,screeninfo,

,id,id of the session to restore

Proxy Parameters,,

,NXproxy -s,

,options=<path to options file>:<display>,path to an options file containing the
remaining options

,NX,

,session=<session name>,session name. Derived from conf file name in the
commercial client.

,root=<path>,where to keep session related files (?)
,id=<hostname>-<display>-<id>,

,cookie=<proxy cookie>,Cookie used for proxy authentication. Set by server
and communicated to client with NX> 701

Jlisten=<port:display>,Port and display to listen for forwarded NXSSH
connection. The port is the one defined in the NX> 299 command and the
display is the same as display in the options parameter

21

