PS: Combining the above algorithm with LDA should give even better results, solving both pose and illumination variation.<br><br><div class="gmail_quote">On Sun, Apr 18, 2010 at 8:54 PM, Aditya Bhatt <span dir="ltr"><<a href="mailto:adityabhatt1991@gmail.com">adityabhatt1991@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;"><div class="gmail_quote"><div>Hi Kunal,</div><div><br></div><div>There was a slight error in your interpretation of their method :</div>
<div class="im"><div><br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div class="gmail_quote"><div>( from the italicized text ) So many pose varied images of a person are readily available in a face database as FERET but difficult<br>
to get in a Personal Photo album. ( Usage of the system overtime will increase recognition results but users may not continue <br>using the system for that long ! ) <br> </div></div></blockquote><div><br></div></div><div>
They actually use the FERET database to train the coefficients for the reconstruction of the profile/side face into a frontal face. Later, those same coefficients can be used to map a <i>non-FERET</i> profile face to it's virtual frontal equivalent. Therefore, I, as a developer, can generate these coefficients using FERET's huge database, and then ship bundle a file with libface containing the values, for end-users to use :)</div>
<div><br></div><div>There is a very nice paper ( admittedly better-framed than the one I showed you ), that explains how GLR (Global Linear Regression) can be applied to predict the frontal face from the profile view : <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8750&rep=rep1&type=pdf" target="_blank">http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8750&rep=rep1&type=pdf</a></div>
<div><br></div><div>In fact, the authors of this paper go one step further and explain LLR, or Local Linear Regression, which applies the above GLR algorithm to localized "patches" of a face to achieve much finer accuracy in rotation.</div>
<div><br></div><div>So as I see it, this method is well-suited for the problem at hand</div><div><br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="im">
<div><div></div>
<div>-- <br>regards<br>-------<br>Kunal Ghosh<br>
Dept of Computer Sc. & Engineering.<br>Sir MVIT<br>Bangalore,India<br><br>Quote:<br>"Ignorance is not a sin, the persistence of ignorance is"<br>--<br>"If you find a task difficult today, you'll find it difficult 10yrs later too !"<br>
-----<br>"Failing to Plan is Planning to Fail"<br><br>Blog:<a href="http://kunalghosh.wordpress.com" target="_blank">kunalghosh.wordpress.com</a><br>Website:<a href="http://www.kunalghosh.net46.net" target="_blank">www.kunalghosh.net46.net</a><br>
V-card:<a href="http://tinyurl.com/86qjyk" target="_blank">http://tinyurl.com/86qjyk</a><br><br>
</div></div><br></div><div class="im">_______________________________________________<br>
Digikam-devel mailing list<br>
<a href="mailto:Digikam-devel@kde.org" target="_blank">Digikam-devel@kde.org</a><br>
<a href="https://mail.kde.org/mailman/listinfo/digikam-devel" target="_blank">https://mail.kde.org/mailman/listinfo/digikam-devel</a><br>
<br></div></blockquote></div><br><div><div></div><div class="h5"><br clear="all">Cheers,<br>-- <br>Aditya Bhatt<br>Blog : <a href="http://adityabhatt.wordpress.com" target="_blank">http://adityabhatt.wordpress.com</a><br>
Face Recognition Library : <a href="http://libface.sourceforge.net" target="_blank">http://libface.sourceforge.net</a><br>
</div></div></blockquote></div><br><br clear="all"><br>-- <br>Aditya Bhatt<br>Blog : <a href="http://adityabhatt.wordpress.com">http://adityabhatt.wordpress.com</a><br>Face Recognition Library : <a href="http://libface.sourceforge.net">http://libface.sourceforge.net</a><br>