
Semantic collection for Amarok
Abstract :

Nepomuk has been a great semantic framework in recent years with many applications like Dolphin
using it for managing metadata associated with its files and resources. But Amarok, still doesn't
make use of the existing framework which comes bundled with any KDE distro. So, the objective of
the project is to develop a Nepomuk based collection backend for Amarok which is functionally
equivalent to the existing embedded MySql backend. An earlier attempt to achieve this was made
this in GSoC 2008, but it never went on to be implemented and bundled along with the Amarok
package because of reliability and performance issues. This is another attempt to make use of the
excellent Nepomuk framework in Amarok and make it more semantic.

Project :

The Nepomuk-KDE Semantic Desktop[1] project aims to become the central storage for meta data,
the one from the files itself (e.g. size, author, id3-tags) collected by Strigi, the file indexer, user
entered (ratings, tags, comments) and most interesting automatically generated data provided by the
KDE applications (e.g. file source, relations between files and contacts or play counts). Nepomuk
provides access to all these data to all applications to help them show helpful context information
and it will allow to search through the data. Nepomuk itself stores this data as RDF graph in
Virtuoso.

The projects aim to develop a Nepomuk based backend collection plugin which is equivalent and
independent to the existing embedded MySql backend. It is a two way mechanism which allows
indexed data of Nepomuk to be used by Amarok, and the metadata generated by Amarok (eg. play
count, song rating) to be written back into the Nepomuk index.

The Nepomuk based collection backend will be able to work along with the MySql backend. It will
be feature complete in itself so that even if the Nepomuk collection is turned off, it won't affect the
normal functioning of Amarok.

Another key part of the project is developing a strigi analyzer which uses taglib. Taglib is the most
preferred library for audio file metadata extraction and Strigi can leverage the usefulness of taglib
and extract metadata.

Highlights :

• There would be no extra burden (scanning and indexing) on Amarok as Strigi would have
already indexed the audio files and extracted meta data from the whole system. Amarok
would have to just read the metadata from the index through Nepomuk.

• Even if the song is modified outside of Amarok, Nepomuk keeps a track of all the changes
and hence Amarok need not bother about external changes to its associated files.

• This will result in a uniform rating and commenting system in KDE. Other applications can
make use of these ratings in them.
Eg, If a user has rated a song in Dolphin, the same will be reciprocated in Amarok since both
the applications use Nepomuk. Amarok already has a rating system in place, just that we
need to use Nepomuk to handle it.

http://nepomuk.kde.org/

Another usage scenario is audio CD burning. For example, K3b can use the metadata
generated by Amarok and populate the artist, album fields, rating etc.

• The user can tag a song with a website or to another contact, say he downloaded a song from
a particular website he can tag that website or if he borrowed the song from a friend of his,
he can tag that contact. This helps him remember the source of his songs. The nco:contact
and nfo:website can be used for contact and website respectively.

If a user bought music using Amarok stores like Jamendo/Amazon, the metadata about the
purchase can be collected as well. There will be many people waiting to utilize this data and
develop applications/plugins on top of it.

• The Nepomuk collection backend can be turned off and the existing MySql backend can be
used. My interactions with the mentor proved that, this is infact very easy to implement with
the current Amarok architecture.

At the end of the day, the purpose of Nepomuk will be served better if it is used by other
applications.

Technical details :

The core of the project is to implement a NepomukCollection and NepomukQueryMaker classes.
The classes to handle the generated and indexed metadata will be needed as well, eg a handler to
write data back to Nepomuk, to update the UI using the metadata from Nepomuk index etc.

The NepomukQueryMaker can be developed into an API which can be used by plugin developers to
exploit the Nepomuk backend.

• The existing database schema will be followed so as to not break the existing applications
and plugins. So, the propagation to a Nepomuk backend would be seamless.
The current schema can be found here[2]

The NMM ontology will be used along with other ontologies. More information on this can
be found here[3]. A few examples are

Duration nfo:duration
Album nmm:musicAlbum

Artwork nmm:artwork
Rating nao:rating

A few required ontologies (one for background artist) seem to be missing, we can create our
own ontologies in such a scenario or else existing ontologies will be used.

• Another feature that was asked for by the mentors is a Strigi Taglib analyzer. Taglib extracts
metadata very well and is currently used by Amarok. Strigi is based on streams whereas
taglib works on files. We need to figure out a way to use Taglib in Strigi, and build a suitable
Strigi analyzer. I'm not familiar with the intrinsics of Strigi so achieving this requires
considerable research. I plan to use the initial community bonding period for this purpose.

• The code written during the 2008 GSoC attempt will be studied if it can be reused or not.
Nepomuk has come a long way since 2008 and the previous code will be tested for its
relevancy in the current scenario.

http://test.semanticdesktop.org/ontologies/nmm.html
http://amarok.kde.org/wiki/Development/Database_Schema

• The UI need not be changed much or tinkered (as the mentor suggested). The existing UI
will remain the same and the Nepomuk backend will be completely isolated. The entire
project will have no dependency on the UI and will not add new Qwidgets or UI elements.
The main reason being that the user should be able to turn off the Nepomuk backend and
keep using Amarok as it was before.

• At the start of the project, I'll research Gnome's Tracker and check how it uses Nepomuk.
Or, if time permits a separate Tracker plugin could be implemented. Decisions will be taken
after thorough research and interactions with the mentor and the Tracker team. This is
important as Amarok is not platform or desktop environment specific anymore.

• The mentor has asked for unit tests for the collection backend in the final stages of the
coding phase. I do not possess expert proficiency in writing unit tests, but after a quick brush
up on the basics, will come up with tests to validate the project code, esp the Collection
backend.

What next?

If this project is successfully completed as a plugin which can be turned on or off, then it will lead
to development of new applications. Applications can use the indexed metadata to perform metadata
based searches like ' song : Stairway to heaven , date : 21st February '. Similarly, the user should be
able to retrieve the song he played on Christmas last year.

De-duplication :
This is a feature that was requested for in the Amarok forum, removal of duplicate songs

from the disk and not just the playlist. This can be easily implemented using this plugin. Using the
sha1 hash of each song resource, they can be compared and checked if they are duplicates of each
other. A simple SPARQL query like this may suffice to find the duplicates.

QString("select distinct ?u1 where { "
 "?r1 a %1 . ?r2 a %1. ?r1 %2 ?h. ?r2 %2 ?h. "
 "?r1 %3 ?u1. ?r2 %3 ?u2. filter(?r1!=?r2) . }order by ?h ")
 .arg(Soprano::Node::resourceToN3(Nepomuk::Vocabulary::NFO::Audio()))
 .arg(Soprano::Node::resourceToN3(Nepomuk::Vocabulary::NFO::hasHash()))
 .arg(Soprano::Node::resourceToN3(Nepomuk::Vocabulary::NIE::url()));

An application to search for songs(on the hard disk) using its lyrics (nid3:hassynchronizedText or
equivalent) can be developed. This removes the need to use a web service to search for songs using
lyrics.

Other use cases like CD burning etc have already been mentioned before.

Note : This is not the primary priority of the project and will only be implemented after the
Nepomuk backend collection and other project goals are achieved. Extra features like this are only a
indication of what can be done after completion of the project, so that it can serve as an example for
other developers and motivate them to try it out and build applications on top of it.

Time Line :

My university exams start and get over by the end of May and I would be able to start coding full
time, after the completion of my exams. I have no external constraints and can work on the project
spending atleast 40 hours a week for the entire duration until the pencil down phase.

24th April to 7th

May
Go through Amarok code base and its Collection abstractions. Brush up on
Nepomuk. Review 2008 GSoC code for its present day relevance.

7th May to 31st

May
Study how Strigi works, especially the streams. Check on Tracker.
University exams being the reason for the long duration

4th June to 6th

June
Decide on the changes to the db schema if needed. Decide on Tracker
plugin. Discussion with mentor about the Strigi analyzer.

7th June to 22nd

June
Coding on the Nepomuk collection plugin. Decide on what goes into the
database and the right ontologies to be used. Have a working
NepomukCollection at the end of this phase.

25th June to 30th

June
Read up on Unit Tests and write tests for NepomukCollection

2nd July to 18th

July
Implement the NepomukQueryMaker. A possible Amarok API to be
developed in line which can be used by plugins after feasibility analysis.
Mid term evaluation. Get feedback from mentor on overall project design.

19th July to 21st

July
Unit Tests for NepomukQueryMaker

23th July to 8th

August
Work on the Strigi – Taglib analyzer after inputs from the mentors. Test the
analyzer.

9th August to 18th

August
Testing the entire project along with documentation.
Buffer stage, consult the mentor if changes or additions have to be made.
Try implement a side effect application using the newly built collection
backend. Maybe the de-duplication feature.

20th August to
24th August

Pencil down phase, discussion with the mentor over the work done, and
on taking the project forward

Note : Based on the decision on implementing the Tracker plugin, the timeline will be suitably
adjusted during the project term.

About Me :

My name is Phalgun Guduthur, a 21 year old final year under grad majoring in Computer Science in
PESIT, Bangalore India. I have experience in C++, Qt and Web development (JS, PHP, Python). I
have been an avid supporter of open source since 2years now. Have been itching to contribute to an
organization with the stature and size of Amarok since then.

I attended a conference on KDE held in Bangalore, India last year called conf.kde.in where I was
introduced to Nepomuk by Vishesh Handa himself. I have prior experience in open source with my
college project which is hosted in KDE repos. Its a semantic resource browser called 'RepontiK'
built on top of the Nepomuk framework. More details can be found here[4]

My experience in Nepomuk and love for Amarok makes it an ideal challenge for me. The
interactions with the community and meeting interesting people is also a driving force. I always
wanted Nepomuk to go mainstream and happy to help in achieving it.

http://quickgit.kde.org/index.php?p=scratch/hegde/resourcebrowser.git&a=summary
http://conf.kde.in/

The purpose of GSoC would not be served if I don't continue working for Amarok after the
completion of this project. I look at this as a way to get a foothold in the community and keeping
working for it and not just limit myself to this project.

Finally, I can assure you that I am capable of and want to take responsibility of code maintenance
post GSoC and get people to use the plugin hopefully as their primary backend collection plugin.

Contact Details :

Phalgun Guduthur

irc nick : phalgun on #amarok and #nepomuk-kde
email : phalgun.guduthur@gmail.com
github : http://github.com/phalgun

time zone : UTC +530

External Links :

[1] http://nepomuk.kde.org/
[2] http://amarok.kde.org/wiki/Development/Database_Schema
[3] http://test.semanticdesktop.org/ontologies/nmm.html
[4] http://quickgit.kde.org/index.php?p=scratch/hegde/resourcebrowser.git&a=summary

http://quickgit.kde.org/index.php?p=scratch/hegde/resourcebrowser.git&a=summary
http://test.semanticdesktop.org/ontologies/nmm.html
http://amarok.kde.org/wiki/Development/Database_Schema
http://nepomuk.kde.org/
http://github.com/phalgun
mailto:phalgun.guduthur@gmail.com

