
Semantic collection for Amarok
Abstract :

Nepomuk has been a great semantic framework in the recent years with many applications like
Dolphin using it for managing metadata associated with files. But Amarok, still doesn't make use of
the existing framework which comes bundled with any KDE distro. So, the objective of the project
is to develop a Nepomuk based collection backend for Amarok which is functionally equivalent to
the existing embedded MySql backend. An earlier attempt to achieve this was made this, in GSoC
2008 but it never went on to be implemented and bundled along with the Amarok package because
of reliability and performance issues. This is another attempt to make use of the excellent Nepomuk
framework in Amarok and make it more semantic.

Project :

The Nepomuk-KDE Semantic Desktop project aims to become the central storage for meta data, the
one from the files itself (e.g. size, author, id3-tags) collected by Strigi, the file indexer, user entered
(ratings, tags, comments) and most interesting automatically generated data provided by the KDE
applications (e.g. file source, relations between files and contacts or play counts). Nepomuk
provides access to all these data to all applications to help them show helpful context information
and it will allow to search through the data. Nepomuk itself stores this data as RDF graph in
Virtuoso.

The projects aim to develop a Nepomuk based backend collection which is equivalent to the
existing embedded MySql backend. It is a two way mechanism which allows indexed data of
Nepomuk to be used by Amarok, and the metadata generated by Amarok (eg. play count, song
rating) to be written back into the Nepomuk index.

Why is this project necessary?

• There would be no extra burden (scanning and indexing) on Amarok as Strigi would have
already indexed the audio files and extracted meta data from the whole system. Amarok
would just have to read the metadata from the index.

• This will result in a uniform rating and commenting system in KDE. Other applications can
make use of this in them. Eg, If a user has rated a song in Dolphin, the same will be
reciprocated in Amarok since both the applications use Nepomuk. Amarok already has a
rating system in place, its just that we need to use Nepomuk to handle it.

Another example maybe during audio CD burning. For example, K3b can use the metadata
generated by Amarok and populate the artist, album fields, rating etc.

• Interesting applications can be built on top of this, say using Nepoogle/NepSak a song can
be searched using its lyrics (nid3:hassynchronizedText) without the help of any online web
service.

• The user can tag a song with a website or to another contact, say he downloaded a song from
a particular website he can tag that website or if he borrowed the song from a friend of his,
he can tag that contact. This helps him remember the source of his songs. The
nid3:involvedPerson and nid3:involvedPersonContact can be used for the contact and

http://nepomuk.kde.org/

nfo:website for the website.

If a user has bought music using Amarok stores like Jamendo, the metadata about the
purchase can be collected as well. There will be many people waiting to utilize this data and
develop applications/plugins on top of it.

• Even if the song is modified outside of Amarok, Nepomuk keeps a track of all the changes
and Amarok need not bother about external changes to its associated files.

• The Nepomuk collection backend can be turned off and the existing MySql backend can be
used. My interactions with the mentor proved this is infact very easy to implement with the
current Amarok architecture.

At the end of the day, the purpose of Nepomuk will be served only if it is used by other
applications.

Technical details :

The core of the project is to implement a NepomukCollection and NepomukQueryManager classes.
The classes to handle the metadata generated and indexed will be needed as well, eg a handler to
write back data to Nepomuk etc.

• The existing database schema will be followed to not break the existing applications and
plugins. So, the propagation of any developer to a Nepomuk backend would be seamless.
Backward compatibility should be maintained even if some extra metadata (which is not
currently being tracked) is being written into the Nepomuk index. The schema can be found
here.

The NID3 ontology will be used mainly for metadata processing of audio files. More
information on this can be found here.
Eg. The following ontologies can be used

Artist nid3:originalArtist, nid3:leadArtist, nid3:backgroundArtist
Album nid3:albumTitle, nid3:originalAlbumTitle
Year nid3:originalReleaseYear

Rating nao:rating

Similarly, respective ontologies can be used and implemented for the appropriate metadata.

• The Implementation of the Nepomuk Collection plugin will have 2 major components,

http://www.semanticdesktop.org/ontologies/nid3/
http://amarok.kde.org/wiki/Development/Database_Schema

developing the Collection backend and the Query Manager. There should be methods to
write back the generated metadata into the Nepomuk index and ways to retrieve the indexed
metadata from Nepomuk into Amarok.
The NepomukQueryManager can be developed into an API which can be used by plugin
developers to exploit the Nepomuk backend.

• During the coding phase, I will discuss with the mentor and other members of the Amarok
team on the feasibility of using taglib and strigi together for better metadata generation for
better meta data generation.

• I have had experience in Nepomuk before, and have not noticed any performance issues that
might crop up, but if they do, I will have contingency measures ready that will be
incorporated if needed. I would need the help of the Amarok and Nepomuk teams in this
case for consultation.

• The code written during the 2008 GSoC attempt will be studied if it can be reused or not.
Nepomuk has come a long way since 2008 and the previous code will be tested for its
relevancy in the current scenario.

• The UI need not be changed much or tinkered (as the mentor suggested) The existing UI will
remain the same and complete isolation will be provided to the Nepomuk backend. The
entire project will have no dependency on the UI and will not add new Qwidgets or UI
elements unless absolutely required. Another advantage of this is that the user can turn off
the Nepomuk backend and keep using Amarok like it was before.

• The mentor has asked for unit tests for the collection backend in the final stages of the
coding phase. I do not possess expert proficiency in writing unit tests, but after a quick brush
up on the basics, will come up with tests to validate the project code, esp the Collection
backend.

Outcome :

If this project is successfully completed as a plugin which can be turned on or off, then it will lead
to development of new applications. They can use the indexed metadata to perform metadata based
search, so queries like ' song : Stairway to heaven , date : 21st February ' can be made feasible. The
user can retrieve the song he played on Christmas last year similarly.

Other use cases like CD burning etc have already been mentioned before.

Time Line :

My college exams start in the month of May get over by the end of May and I would be able to start
hardcore coding only after the completion of my exams. Since, I'm in my final year I have no
external constraints and can work on the project full time for the entire duration until the pencil
down phase.

1st May to 7th May Go through Amarok code base. Especially the Collection
abstractions

7th May to 31st May Brush up my Nepomuk knowledge. University exams being the
reason for the long duration.

4th June to 9th June Review 2008 GsoC code for its present day relevance. Decide on

the changes to the db schema if needed.
11th June to 30th June Coding on the Nepomuk collection plugin. Decide on what goes

into the database.
What new metadata needs to be written into the database. Consult
the Nepomuk team on the right ontologies to be used.
Finish the 'write to db' phase of the project. Will have a working
NepomukCollection class at the end of this phase.

2nd July to 7th July Unit Tests for the NepomukCollection class
9th July to 13th July Mid term evaluation
16th July to 28th July Implement the NepomukQueryManager. Discuss with the mentor of

a possible Amarok API to be developed in line which can be used by
plugins

30th July to 4th August Unit Tests for NepomukQueryManager
6th August to 15th

August
Testing the entire project. Documentation phase.
Buffer stage, consult the mentor if changes or additions have to be
made.

15th August to 18th

August
Documentation and last minute changes

20th August to 24th

August
Pencil down phase, discussion with the mentor over the work done.

About Me :

My name is Phalgun Guduthur, a 21 year old final year under grad majoring in Computer Science in
PESIT, Bangalore India. I have experience in Python, JS, PHP, C++ and Qt. I have been an avid
supporter of open source since 2years now. Have been itching to contribute to an organization with
the stature of Amarok since then.

I have prior experience in open source with my college project which is hosted in KDE repos. Its a
semantic resource browser on top of the Nepomuk framework. More details can be found here.

I attended a conference on KDE held in Bangalore, India last year called conf.kde.in where there
was a talk by by Lydia Pintscher on GSoC and KDE. It helped me in applying for GSoC in 2011 but
unfortunately wasn't selected. But I have learnt from my mistakes and am applying again without
repeating the same mistakes.

My experience in Nepomuk and love for Amarok makes it an ideal challenge for me. Incidentally
this was one of the ideas we mooted for our college project. If selected, I get to work on something I
wanted to since a long time, making it an interesting and rewarding experience. I always wanted
Nepomuk to go mainstream and happy to help in achieving it.

Contact Details :

Phalgun Guduthur

irc nick : phalgun on #amarok and #nepomuk-kde
email : phalgun.guduthur@gmail.com
github : http://github.com/phalgun

time zone : UTC +530

http://github.com/phalgun
mailto:phalgun.guduthur@gmail.com
http://quickgit.kde.org/index.php?p=scratch/hegde/resourcebrowser.git&a=summary

