
ContextView architecture

leo franchi

Overview of the Context View framework for the 2009 Amarok DevSprint.

1 Classes

1.1 ContextView

• Subclasses Plasma::View (and hence QGraphicsView). Is passed the containment that it should be a
view on.

• Kept in sync by plasma with the containment size and location, updates the containment size when it
is itself resized.

• Loads and saves applets (indirectly, by loading and saving containment)

1.2 ContextScene

• Plasma::Corona (stub implementation, everythin done by Qt)

1.3 ContextObserver

• Notifies engines and applets about state changes to the contextview. Switches between sending Home
and Current messages.

1.4 LyricsManager

• In the middle between the lyrics scripts (and AmarokLyricsScript.h/cpp) and the lyrics applets. Lyrics
engine is an observer to this, and this is what handles the lyrics from the scripts themselves.

1.5 ToolbarView

• The applet toolbar is not where it appears to be. In order for scrolling to work (which is now disabled),
the toolbar exists at around (0, 2000) in screen coordinates. The ToolbarView is fixed over this location
on the scene. Done like this so the popup applet menu can be visualized in the main ContextView
above.

• Also, the whole overlay (config mode) item thing is QWidget-based, not QGraphicsItem-based. This
is so we can lock the horizontal position of the widgets when they are dragged around. Hence, all the
config mode logic is here, creating and destroying the overlay, connecting the overlay items with the
main CV layout, etc.

1.6 containments/verticallayout/VerticalToolbarContainment

• The main containment that managed the applets in the ContextView.

• Mostly exists to contain the VerticalAppletLayout, which actually manages the applets. Recieves the
add requests, and passes them along accordingly.

1.7 containments/verticallayout/VerticalAppletLayout

• The actual applet layout manager. Loads/saves applets to config file. Manages heights and locations
of each applet, inserts applets in appropriate places.

1



1.8 widgets/* (miscellaneous)

• ToolBoxMenu is the popup menu that is where you select applets from. It has ToolBoxIcons (not really
icons, more the menu items).

• TrackWidgets are displayed in the Current applet when a track is not playing—each represents 1
recently played track (for example).

2 Initialization notes

The startup process is a bit convoluted. Here is what happens:

1. MainWindow creates the ContextWidget (containter for CV). MainWindow creates the ContextScene.
MainWindow connects to the Plasma::Corona containmentAdded() signal.

2. When created, ContextScene loads the VerticalToolbarContainment (via KTrader).

3. MainWindow::createContextView() is called with the loaded containment.

4. MainWindow creates ContextView, with the loaded containment and ContextScene, and Home “mode”
is shown.

5. MainWindow also creates ToolbarView with the loaded containment and ContextScene.

3 Applets

• Applets are normal KDE plugins, they live in our SVN but are built completely separately and installed
into system directories. KDE loads them up on-demand with the KTrader system.

• Applets derive from Context::Applet, which is basically Plasma::Applet with some convenience func-
tions (like background painting) to make all applets look similar and fit in. Use shrinkTextSizeToFit(),
drawRoundedRectAroundText(), addGradientToAppletBackground(), standardPadding().

• Although the Plasma Way (tm) is to use SVG to theme widgets, after extensive trials using SVG the
standard practice for the Amarok CV is to avoid SVG if possible. This is because it is slow to resize,
which is much more of an issue in an app than on the desktop. A SVG-heavy applet can easily make
the whole of amarok difficult to resize.

• Do not forget the K_EXPORT_AMAROK_APPLET in the header file.

• Important methods to implement are init() (do all initializations here), paintInterface() (do all painting
here), constraintsEvent() (do all layouting here), and dataUpdate() (respond to new data from engine
here). Also, contextualActions() can return a list of additional QActions to be inserted in the default
right-click menu.

• DO NOT DO ANYTHING EXCEPT FOR PAINT IN paintInterface. If you trigger an update you
will end up in an infinite loop.

• See plasma tutorials and docs for more info.

4 DataEngines

• Also normal KDE plugins, quite straightforward really. Read the KDE api docs for more info.

2


